UOJ 21 [UR #1]缩进优化

枚举+整除技巧

对于一个x,它的答案是

ni=1(aix+aimodx)

把取模转化为乘除运算并且整理得
ni=1(ai+aix(1x))

于是问题就变成如何快速求出 aix ,这正是我没想到的- -。我们发现随着 ai 增大, aix 是不降的,于是可以枚举取值,复杂度是log的。

附UOJ题解:http://vfleaking.blog.uoj.ac/blog/33

#include<cstdio>
#define N 1000005
using namespace std;
int a[N], cnt[N];
int main()
{
    int n;
    long long ans=1ll<<62, sum=0;
    scanf("%d",&n);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d",&a[i]);
        cnt[a[i]]++;
        sum+=a[i];
    }
    for(int i = N-2; i; i--)
        cnt[i]+=cnt[i+1];
    for(int x = 1; x < N; x++)
    {
        long long temp=0;
        for(int j = 1; 1.0 * j * x < N; j++)
            temp+=cnt[j*x];
        temp*=(1-x);
        temp+=sum;
        if(ans>temp)ans=temp;
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值