2018徐州网络赛
全世界都AK的场,就过了9题,虽然少了一个人。
Morgana Net
题目描述
https://nanti.jisuanke.com/t/31463
题解
卷积神经网络搞k次,求之后又多少个1。
直接做的话不满足结合律搞不了。
被CNN限制住了思维,没想到把它展开。
其实这东西就是个线性递推,把那个二维的东西搞成一维建个矩阵快速幂一下就好了。
有点卡常,加了点黑科技过了。
代码
#include<bits/stdc++.h>
#define ll long long
#define N 10
#define M 65
using namespace std;
int T,n,m,k,L,cnt,res,A[N][N],B[N][N],w[N][N],v[M];
ll X[M],Y[M];
struct node{
int s[M][M];
inline int cal(ll x)
{
int res=0;
for(;x;x-=x&-x)res^=1;
return res;
}
inline node operator*(const node &p){
node res;
for(int i=1;i<=cnt;i++)X[i]=Y[i]=0;
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
X[i]=(X[i]<<1)+s[i][j];
for(int j=1;j<=cnt;j++)
for(int i=1;i<=cnt;i++)
Y[j]=(Y[j]<<1)+p.s[i][j];
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
res.s[i][j]=cal(X[i]&Y[j]);
return res;
}
}t,ans;
inline node Pow(node a,int b)
{
node res=a;b--;
while(b)
{
if(b&1)res=res*a;
a=a*a;b>>=1;
}
return res;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
L=(m-1)/2;cnt=0;res=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&A[i][j]),A[i][j]&=1;
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
scanf("%d",&B[i][j]),B[i][j]&=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
v[w[i][j]=++cnt]=A[i][j];
memset(t.s,0,sizeof(t.s));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int x=i-L,X=1;X<=m;x++,X++)
for(int y=j-L,Y=1;Y<=m;y++,Y++)
if(x>=1&&x<=n&&y>=1&&y<=n)
t.s[w[x][y]][w[i][j]]=B[X][Y];
ans=Pow(t,k);
for(int i=1;i<=cnt;i++)
{
int tmp=0;
for(int j=1;j<=cnt;j++)tmp^=ans.s[j][i]&v[j];
res+=tmp;
}
printf("%d\n",res);
}
return 0;
}
End Fantasy VIX
题目描述
https://nanti.jisuanke.com/t/31457
题解
如果没有连续T次双倍的限制的话,直接弗洛伊德快速幂就好了。
T次双倍的话,先算出矩阵的T-1次方,再考虑怎么把t-T次方放在之前的两边。
这部分的话,再写出第二类快速幂,放前面和放后面取个最优就好了。
代码
#include<bits/stdc++.h>
#define ll long long
#define N 70
using namespace std;
int n,m,t,T,v[N];ll res;
struct node{
ll s[N][N];
node operator*(const node &p)const{
node res;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
ll tmp=max(s[i][j],p.s[i][j]);
for(int k=1;k<=n;k++)
if(s[i][k]&&p.s[k][j])
tmp=max(tmp,s[i][k]+p.s[k][j]-v[k]);
res.s[i][j]=tmp;
}
return res;
}
node operator+(const node &p)const{
node res;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
res.s[i][j]=max(s[i][j],p.s[i][j]);
return res;
}
}A,I,ans;
node Pow(node a,int b)
{
node res=I;
while(b)
{
if(b&1)res=res*a;
a=a*a;b>>=1;
}
return res;
}
node Pow(node x,node y,int b)
{
node res=x,tmp=I;x=x*y+y*x;
while(b)
{
if(b&1)res=tmp*x+x*tmp,tmp=tmp*y;
x=x*y+y*x;y=y*y;b>>=1;
}
return res;
}
int main()
{
int a,b;
scanf("%d%d%d%d",&n,&m,&t,&T);
for(int i=1;i<=m;i++)
scanf("%d%d",&a,&b),A.s[a][b]=1;
for(int i=1;i<=n;i++)scanf("%d",&v[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)A.s[i][j]*=v[i]+v[j];
for(int i=1;i<=n;i++)I.s[i][i]=v[i];
ans=Pow(A,T-1);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)ans.s[i][j]<<=1;
ans=Pow(ans,A,t-T);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)res=max(res,ans.s[i][j]);
ans=Pow(A,t-1);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)res=max(res,ans.s[i][j]);
printf("%lld\n",res);
return 0;
}