隐马尔可夫模型(HMM)之概率计算

本文详细介绍了隐马尔可夫模型(HMM)的概率计算,包括前向算法、后向算法及其结合表示,以及关键概率γt(i)和ξt(i,j)的计算,这些都是解决HMM学习和预测问题的基础。" 26295207,3157447,使用Python打造高性能HTTP服务器与Web框架,"['Python', 'Web开发', '服务器', '框架', '性能测试']
摘要由CSDN通过智能技术生成

隐马尔可夫模型(HMM)之概率计算

1. 前言

本文主要对隐马尔可夫(Hidden Markov model,HMM)模型的三个基本问题做一个整理.其中所用符号与参考资料《统计学习方法》-李航保持一致,是对该章的学习笔记以便复习查看。

本文主要是隐马尔可夫模型的第一个概率计算的问题整理。

其他两个问题可参考

隐马尔可夫模型(HMM)之学习问题

隐马尔可夫模型(HMM)之预测问题

2. 符号说明

设所有可能的状态集合 Q = { q 1 , q 2 , ⋯   , q N } Q=\{q_1,q_2,\cdots ,q_N\} Q={ q1,q2,,qN},观测结果集合为 V = { v 1 , v 2 , ⋯   , v M } V=\{v_1,v_2,\cdots ,v_M\} V={ v1,v2,,vM}.

设总共有 T T T个时刻.

T T T个时刻所对应的状态序列 I = ( i 1 , i 2 , ⋯   , i T ) I=(i_1,i_2,\cdots ,i_T) I=(i1,i2,,iT),所对应的观测序列 O = ( o 1 , o 2 , ⋯   , o T ) O=(o_1,o_2,\cdots,o_T) O=(o1,o2,,oT).

状态转移概率矩阵 A = [ a i j ] N × N A=[a_{ij}]_{N \times N} A=[aij]N×N.

表示在某个时刻 t t t的状态为 q i q_i qi,要转移到 t + 1 t+1 t+1时刻的状态 q j q_j qj的概率是 a i j a_{ij} aij.也就是 a i j = p ( i t + 1 = q j ∣ i t = q i ) a_{ij}=p(i_{t+1}=q_j|i_t=q_i) aij=p(it+1=qjit=qi).(这里 t t t是任意 1 ≤ t < T 1\le t \lt T 1t<T的,也就说整个状态转移矩阵在整个时序上传递是共享的).

观测概率矩阵 B = [ b j ( k ) ] N × M B=[b_j(k)]_{N\times M} B=[bj(k)]N×M.

表示在某个时刻 t t t的状态为 q j q_j qj,在状态 q j q_j qj的观测结果为 v k v_k vk的概率为 b j ( k ) b_j(k) bj(k).也就是 b j ( k ) = p ( o t = v k ∣ i t = q j ) b_j(k)=p(o_t=v_k|i_t=q_j) bj(k)=p(ot=vkit=qj).同样这个 B B B也是共享的.

初始状态转移概率向量 π = ( π i ) \pi=(\pi_i) π=(πi).它是 N × 1 N\times1 N×1分别对应着时刻 t = 1 t=1 t=1 N N N个状态.

上述符号可以结合下图一一对应,方便理解

在这里插入图片描述

从图中的箭头的描述来看,其实包含了HMM的两个基本假设.(这里就通俗地讲)

  • 每一个时刻 t t t的状态 i t i_t it只依赖于前一个状态 i t − 1 i_{t-1} it1.
  • 每一个观测结果 o t o_t ot只依赖于当前的隐含状态 i t i_t it.

π , A , B \pi,A,B π,A,B都是模型的参数,就用 λ = ( π , A , B ) \lambda=(\pi,A,B) λ=(π,A,B)来统一代替方便表示.

3.三个基本问题

  • 概率计算.给定模型参数 λ \lambda λ和观测结果 O = ( o 1 , o 2
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值