DeepSeek有什么用?学生和上班族这样用DeepSeek可以帮你快速提效

‍‌​​‌‌​‌​‍‌​​​‌‌​​‍‌​​​‌​‌​‍‌​​‌​​‌​‍‌​‌‌‌‌​​‍‌​‌​‌‌​​‍‌​​​‌‌‌‌‍‌​‌‌​‌‌‌‍‌‌​​‌​‌​‍‌​​‌‌​‌‌‍‌​​​‌​‌​‍‌​‌‌‌​‌‌‍‌‌​​‌‌‌‌‍‌​‌‌‌​​​‍‌​‌​‌‌​‌‍‌​​‌‌​‌​‍‌​​‌​​‌​‍‌​​​‌​‌‌‍‌​​‌​​​‌‍‌​​​‌​‌​DeepSeek有什么用?DeepSeek在今年春节期间爆火,那么如何应用DeepSeek来解决生活和工作中的实际问题呢?今天来科普下。学生和上班族这样用DeepSeek,可以快速提高学习或办公效率。

工作上,DeepSeek可以帮你快速找到一些教程,也可以写代码、写文章。或者解决数学问题等等。

1、用DeepSeek+mindmaster做思维导图

我用DeepSeek生成专业高质量的文案,再利用亿图脑图mindmaster的AI一键生成思维导图功能快速画图。

虽然它自己回答的比较官方,但是确实比较全全面,回答的内容也是真实存在的,并不是自己“胡诌”。与其他AI工具对比,它的回答更全面和中肯,没有太多臆想和模糊不清。

以下是关于DeepSeek最大的贡献是什么的回答,快速制作高质量的思维导图。

以上,是用DeepSeek+亿图脑图mindmaster做思维导图。

2、快速寻找软件教程

假如,自己不会画鱼骨图,怎么用亿图脑图mindmaster画鱼骨图?在【深度思考】模式下,直接问DeepSeeK“怎么用亿图脑图画鱼骨图?给出步骤”。

要求对方给出步骤,它就会生成教程文案。

答案中虽然没有图片,但是步骤很清晰,几乎都是正确的。个别小问题影响不大,不会对教程产生误导。

上图是DeepSeeK给软件教程。

3、学生利用DeepSeeK计算数学题

遇到数学题不会怎么办?直接问DeepSeeK,它会思考分析后给出答案。许多大佬测试过,大部分数学题都可以做出来,少量竞赛题还存在误读,需要等待版本更新和升级。

比如题目是:某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为多少?

在深度思考模式问DeepSeeK,它会在思考后反复验证给出答案,如下:

上图是DeepSeeK解数学题。目前,DeepSeeK还不支持图片,未来一旦可以识别识别提取各类图片,它的解题能力会更强,超越目前的扫描解题APP。

‍‌​​‌‌​‌​‍‌​​​‌‌​​‍‌​​​‌​‌​‍‌​​‌​​‌​‍‌​‌‌‌‌​​‍‌​‌​‌‌​​‍‌​​​‌‌‌‌‍‌​‌‌​‌‌‌‍‌‌​​‌​‌​‍‌​​‌‌​‌‌‍‌​​​‌​‌​‍‌​‌‌‌​‌‌‍‌‌​​‌‌‌‌‍‌​‌‌‌​​​‍‌​‌​‌‌​‌‍‌​​‌‌​‌​‍‌​​‌​​‌​‍‌​​​‌​‌‌‍‌​​‌​​​‌‍‌​​​‌​‌​DeepSeeK它的使用范围很广,我只例举几个例子,供大家参考。其实,它还可以写作文、写中短篇文章。帮你解决各种生活中的疑问,当然,大家要注意,AI工具只是辅助,不能完全100%相信工具,避免工具中的内容误导自己。

### 微调 DeepSeek 的作用 微调 DeepSeek 主要是为了让模型能够更好地适应特定的任务需求或数据集特性。通过引入少量标注的数据并调整预训练模型中的参数,可以显著高模型在具体任务上的表现[^1]。 对于像 DeepSeek-R1 DeepSeek-7B-chat 这样的大型语言模型来说,在消费级硬件上利用 LoRA(低秩自适应)等方法进行微调不仅降低了计算资源的要求,还使得个人开发者也能参与到高性能AI系统的定制化开发中来[^2]。 此外,基于 transformers 及 peft 等框架对 DeepSeek 模型实施 Lora 微调,则进一步简化了这一过程的技术门槛,并增强了灵活性与率[^3]。 ### 应用场景 #### 自然语言处理领域 - **情感分析**:通过对特定行业的评论文本进行微调,使 DeepSeek 更加精准地识别正面、负面情绪倾向。 - **机器翻译**:针对某些小语种或是专业术语丰富的文档实现高质量的自动翻译服务。 #### 编程辅助工具构建 - 开发者可以通过对自己项目代码库的学习,创建个性化的编程助手,供更贴合实际工作的建议支持。 #### 行业专用对话机器人打造 - 结合企业内部的知识图谱资料,经过针对性训练后的 DeepSeek 能够作为客服代表解答常见问题,甚至参与复杂业务流程咨询。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-model-name") model = AutoModelForCausalLM.from_pretrained("deepseek-model-name") def fine_tune_deepseek(training_data_path): # 加载训练数据... optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): model.train() outputs = model(**inputs) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() fine_tune_deepseek('path_to_your_training_data') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值