时间复杂度是什么?
一个函数,用大O表示,比如O(1)、O(n)、O(logN)…
定性描述该算法的运行时间
1,log2n ,n n2
n的2次方要比n大
n要比log的2n的次方要大
log的2n的次方要比1大
o(1)
let i=0
i+=1
每次运行这个文件的时候 这个代码只会运行一次
O(n)
for(let i=0;i<n;i+=1){
console.log(i),
}
因为这个i会运行n次所以他的时间复杂读是O(n)
O(1)+O(n)=O(n)
let i=0;
i+=1;
for (let j=0;j<n;j+=1){
consloe.log(J);
}
为什么O(1)+O(n)=O(n)
因为n的足够大的时候 1可以忽略不记了
O(n)O(n)=O(n^2)
for (let i=0;i<n;i+=1){
for(let j=0;j<n;j+=1){
consloe.log(i,j)
}
}
一个for循环嵌套另一个for循环
注意时间复杂度 相乘 是按照正常乘法
nn=n的二次方
相加的话是忽略最小的时间复杂度
O(logN)
let i = 1;
while (i <n){
console.log(i);
i *= 2;}
logN就是求2的多少次方为N
空间复杂度
空间复杂度是什么?
一个函数,用大O表示,比如O(1)、O(n)、O(n的2次方)…
算法在运行过程中临时占用存储空间大小的量度
o(1)
let i=0
i+=1
为什么
他只声明了单个变量,单个变量所占有内存永远是1 永远恒定的一个内存
o(n)
const list=[];
for(let i=0;i<n;i+=1){
list.push(i);
}
为什么呢
因为它声明了名为list的数组,我们给数组里面添加了n个值,
它们相当于占用了n个内存单元所以我们说o(n)
O(n^2)
其实就是矩阵
const matrix=[];
for(let i=0;i<n;i+=1){
matrix.push([]);
for(let j=0;j<0;j+=1){
matrix[i].push(j);
}
}
为什么矩阵就是o的n的2次方
矩阵本质就是二维数组
就是嵌套了两层的二维数组
它存储n的2次方变量