JDK内存分析排查工具

虚拟机性能监控、故障处理工具

Java开发人员肯定都知道JDK的bin目录中有java.exe、javac.exe这两个命令行工具,但并非所有程序员都了解过JDK的bin目录下其他各种小工具的作用。随着JDK版本的更迭,这些小工具的数量和功能也在不知不觉地增加与增强。除了编译和运行Java程序外,打包、部署、签名、调试、监控、运维等各种场景都可能会用到它们。

Arthas线上分析诊断调优工具

以前我们要排查线上问题,通常使用的是jdk自带的调优工具和命令。最常见的就是dump线上日志,然后下载到本地,导入到jvisualvm工具中。这样操作有诸多不变,现在阿里团队开发的Arhtas工具,拥有非常强大的功能,并且都是线上的刚需,尤其是情况紧急,不方便立刻发版,适合临时处理危急情况使用。下面分两部分来研究JVM性能调优工具:

1.JDK自带的性能调优工具

虽然有了Arthas,但也不要忘记JDK自带的性能调优工具,在某些场景下,他还是有很大作用的。而且Arthas里面很多功能其根本就是封装了JDK自带的这些调优命令。

2.Arthas线上分析工具的使用

这一部分,主要介绍几个排查线上问题常用的方法。功能真的很强大,刚兴趣的猿媛可以研究其基本原理。之前跟我同事讨论,感觉这就像病毒一样,可以修改内存里的东西,真的还是挺强大的。

以上两种方式排查线上问题,没有优劣之分,如果线上不能安装Arthas就是jdk自带命令,如果jdk自带命令不能满足部分要求,又可以安装Arthas,那就使用Arthas。他们只是排查问题的工具,重要的是排查问题的思路。不管黑猫、白猫,能抓住耗子就是好猫。

一、JDK自带的调优工具

这里不是流水一样的介绍功能怎么用,就说说线上遇到的问题,我们通常怎么排查,排查的几种情况。

内存溢出,出现OutOfMemoryError,这个问题如何排查
CPU使用猛增,这个问题如何排查?
进程有死锁,这个问题如何排查?
JVM参数调优

下面来一个一个解决

1、处理内存溢出,报OutOfMemoryError错误第一步:通过jmap -histo命令查看系统内存使用情况

使用的命令:

jmap -histo 进程号

运行结果:

num     #instances         #bytes  class name
----------------------------------------------
	 1:       1101980      372161752  [B
   2:        551394      186807240  [Ljava.lang.Object;
   3:       1235341      181685128  [C
   4:         76692      170306096  [I
   5:        459168       14693376  java.util.concurrent.locks.AbstractQueuedSynchronizer$Node
   6:        543699       13048776  java.lang.String
   7:        497636       11943264  java.util.ArrayList
   8:        124271       10935848  java.lang.reflect.Method
   9:        348582        7057632  [Ljava.lang.Class;
  10:        186244        5959808  java.util.concurrent.ConcurrentHashMap$Node
  8671:      1             16  zipkin2.reporter.Reporter$1
  8672:      1             16  zipkin2.reporter.Reporter$2
 
Total       8601492      923719424                                   
                                     
                                     
num:序号
instances:实例数量
bytes:占用空间大小
class name:类名称,[C is a char[][S is a short[][I is a int[][B is a byte[][[I is a int[][]

通过这个命令,我们可以看出当前哪个对象最消耗内存。

上面这个运行结果是我启动了本地的一个项目,然后运行【jmap -histro 进程号】运行出来的结果,直接去了其中的一部分。通过这里我们可以看看大的实例对象中,有没有我们自定义的实例对象。通过这个可以排查出哪个实例对象引起的内存溢出。

除此之外,Total汇总数据可以看出当前一共有多少个对象,暂用了多大内存空间。这里是有约24w个对象,占用约28388336字节对象,换算下来27M的空间。

第二步:分析内存溢出,查看堆空间占用情况

使用命令

jhsdb jmap --heap --pid 进程号

运行结果

[root@iZ2pl8Z ~]# jhsdb jmap --heap --pid 28692
  
Attaching to process ID 28692, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 11.0.13+10-LTS-370
 
using thread-local object allocation.
Garbage-First (G1) GC with 4 thread(s)
 
Heap Configuration:
   MinHeapFreeRatio         = 40
   MaxHeapFreeRatio         = 70
   MaxHeapSize              = 2065694720 (1970.0MB)
   NewSize                  = 1363144 (1.2999954223632812MB)
   MaxNewSize               = 1239416832 (1182.0MB)
   OldSize                  = 5452592 (5.1999969482421875MB)
   NewRatio                 = 2
   SurvivorRatio            = 8
   MetaspaceSize            = 21807104 (20.796875MB)
   CompressedClassSpaceSize = 1073741824 (1024.0MB)
   MaxMetaspaceSize         = 17592186044415 MB
   G1HeapRegionSize         = 1048576 (1.0MB)
 
Heap Usage:
G1 Heap:
   regions  = 1970
   capacity = 2065694720 (1970.0MB)
   used     = 467303384 (445.65523529052734MB)
   free     = 1598391336 (1524.3447647094727MB)
   22.622093161955704% used
G1 Young Generation:
Eden Space:
   regions  = 263
   capacity = 464519168 (443.0MB)
   used     = 275775488 (263.0MB)
   free     = 188743680 (180.0MB)
   59.36794582392776% used
Survivor Space:
   regions  = 6
   capacity = 6291456 (6.0MB)
   used     = 6291456 (6.0MB)
   free     = 0 (0.0MB)
   100.0% used
G1 Old Generation:
   regions  = 179
   capacity = 275775488 (263.0MB)
   used     = 186285016 (177.65523529052734MB)
   free     = 89490472 (85.34476470947266MB)
   67.54951912187352% used

下面来看看参数的含义

堆空间配置信息:

Heap Configuration:
 /**

- 空闲堆空间的最小百分比,计算公式为:HeapFreeRatio =(CurrentFreeHeapSize/CurrentTotalHeapSize) * 100,值的区间为0 * 到100,默认值为 40。如果HeapFreeRatio < MinHeapFreeRatio,则需要进行堆扩容,扩容的时机应该在每次垃圾回收之后。
  */
  MinHeapFreeRatio = 40  
  /**
- 空闲堆空间的最大百分比,计算公式为:HeapFreeRatio =(CurrentFreeHeapSize/CurrentTotalHeapSize) * 100,值的区间为0
- 到100,默认值为 70。如果HeapFreeRatio > MaxHeapFreeRatio,则需要进行堆缩容,缩容的时机应该在每次垃圾回收之后
  */
  MaxHeapFreeRatio = 70
  /**JVM 堆空间允许的最大值*/
  MaxHeapSize = 2065694720 (1970.0MB)
  /** JVM 新生代堆空间的默认值*/
  NewSize = 1363144 (1.2999954223632812MB)
  /** JVM 新生代堆空间允许的最大值 */
  MaxNewSize = 1239416832 (1182.0MB)
  /** JVM 老年代堆空间的默认值 */
  OldSize = 5452592 (5.1999969482421875MB)
  /** 新生代(2个Survivor区和Eden区 )与老年代(不包括永久区)的堆空间比值,表示新生代:老年代=1:2*/
  NewRatio = 2
  /** 两个Survivor区和Eden区的堆空间比值为 8,表示 S0 : S1 :Eden = 1:1:8 */
  SurvivorRatio = 8
  /** JVM 元空间的默认值 */
  MetaspaceSize = 21807104 (20.796875MB)
  CompressedClassSpaceSize = 1073741824 (1024.0MB)
  /** JVM 元空间允许的最大值 */
  MaxMetaspaceSize = 17592186044415 MB
  /** 在使用 G1 垃圾回收算法时,JVM 会将 Heap 空间分隔为若干个 Region,该参数用来指定每个 Region 空间的大小 */
  G1HeapRegionSize = 1048576 (1.0MB)

G1堆使用情况

Heap Usage:
G1 Heap:
   regions  = 1970
   capacity = 2065694720 (1970.0MB)
   used     = 467303384 (445.65523529052734MB)
   free     = 1598391336 (1524.3447647094727MB)
   22.622093161955704% used
     
G1 的 Heap 使用情况,该 Heap 包含 1970 个 Region,结合上文每个 RegionSize=1M,因此 Capacity = Regions * RegionSize = 1970 * 1M = 1970M,已使用空间为 445.65M,空闲空间为 1524.34M,使用率为 22.62%。

G1年轻代Eden区使用情况

G1 Young Generation:
Eden Space:
   regions  = 263
   capacity = 464519168 (443.0MB)
   used     = 275775488 (263.0MB)
   free     = 188743680 (180.0MB)
   59.36794582392776% used
   G1 的 Eden 区的使用情况,总共使用了 263 个 Region,结合上文每个 RegionSize=1M,因此 Used = Regions * RegionSize = 263 * 1M = 263M,Capacity=443M 表明当前 Eden 空间分配了 443 个 Region,使用率为 59.37%。

G1年轻代Survivor区使用情况和G1老年代使用情况:和Eden区类似

Survivor Space:
   regions  = 6
   capacity = 6291456 (6.0MB)
   used     = 6291456 (6.0MB)
   free     = 0 (0.0MB)
   100.0% used
     
G1 Old Generation:
   regions  = 179
   capacity = 275775488 (263.0MB)
   used     = 186285016 (177.65523529052734MB)
   free     = 89490472 (85.34476470947266MB)
   67.54951912187352% used

Survivor区使用情况和Eden区类似。 老年代参数含义和Eden区类似。
通过上面的命令,我们就能知道当前系统对空间的使用情况了,到底是老年代有问题还是新生代有问题。

第三步:导出dump内存溢出的文件,导入到jvisualvm查看

如果前两种方式还是没有排查出问题,我们可以导出内存溢出的日志,在导入客户端进行分析

使用的命令是:

jmap -dump:file=a.dump 进程号

或者是直接设置JVM参数

-XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=./ (路径)
然后导入到jvisualvm中进行分析,方法是:点击文件->装入,导入文件,查看系统的运行情况了。

b9a81c9dd83003845a3d32f37c7f078f

通过分析实例数,看看哪个对象实例占比最高,这里重点看我们自定义的类,然后分析这个对象里面有没有大对象,从而找出引起内存溢出的根本原因。

2、CPU使用猛增,这个问题如何排查?

我们可以通过Jstack找出占用cpu最高的线程的堆栈信息,下面来一步一步分析。

假设我们有一段死循环,不断执行方法调用,线程始终运行不释放就会导致CPU飙高,示例代码如下:

 
public class Math {
    public static int initData = 666;
    public static User user = new User();
    public User user1;
 
    public int compute() {
        int a = 1;
        int b = 2;
        int c = (a + b) * 10;
        return c;
    }
 
    public static void main(String[] args) {
        Math math = new Math();
        while(true){
            math.compute();
 
        }
    }
}

第一步:运行代码,使用top命令查看cpu占用情况

9b6838f95956d798560635312face7ab
如上,现在有一个java进程,cpu严重飙高了,接下来如何处理呢?

第二步:使用top -p 命令查看飙高进程

top -p 46518

我们看到了单独的46518这个线程的详细信息
f722037deddf4cae0f7268f1e9688490

第三步:按H,获取每个线程的内存情况

需要注意的是,这里的H是大写的H。
caeeeef3b30bdd4a8ac23a169f3e0d76
我们可以看出线程0和线程1线程号飙高。

第四步:找到内存和cpu占用最高的线程tid

通过上图我们看到占用cpu资源最高的线程有两个,线程号分别是4018362,4018363。我们一第一个为例说明,如何查询这个线程是哪个线程,以及这个线程的什么地方出现问题,导致cpu飙高。

第五步:将线程tid转化为十六进制

67187778是线程号为4013442的十六进制数。具体转换可以网上查询工具。

第六步:执行[ jstack 4018360|grep -A 10 67187778] 查询飙高线程的堆栈信息

接下来查询飙高线程的堆栈信息

 jstack 4013440|grep -A 10 67190882

4013440:表示的是进程号
67187778: 表示的是线程号对应的十六进制数
通过这个方式可以查询到这个线程对应的堆栈信息
2ea4a7bee64f299cf12aa8c2b0a5b7be
从这里我们可以看出有问题的线程id是0x4cd0, 哪一句代码有问题呢,Math类的22行。

第七步:查看对应的堆栈信息找出可能存在问题的代码

上述方法定位问题已经很精确了,接下来就是区代码里排查为什么会有问题了。

备注:上面的进程id可能没有对应上,在测试的时候,需要写对进程id和线程id

3、进程有死锁,这个问题如何排查?

Jstack可以用来查看堆栈使用情况,以及进程死锁情况。下面就来看看如何排查进程死锁

还是通过案例来分析

package com.lxl.jvm;
 
public class DeadLockTest {
    private static Object lock1 = new Object();
    private static Object lock2 = new Object();
 
    public static void main(String[] args) {
        new Thread(() -> {
            synchronized (lock1) {
                try {
                    System.out.println("thread1 begin");
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
 
                }
                synchronized (lock2) {
                    System.out.println("thread1 end");
                }
            }
        }).start();
 
        new Thread(() -> {
            synchronized (lock2) {
                try {
                    System.out.println("thread2 begin");
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
 
                }
                synchronized (lock1) {
                    System.out.println("thread2 end");
                }
            }
        }).start();
    }
}

上面是两把锁,互相调用。

定义了两个成员变量lock1,lock2
main方法中定义了两个线程。
线程1内部使用的是同步执行–上锁,锁是lock1。休眠5秒钟之后,他要获取第二把锁,执行第二段代码。
线程2和线程1类似,锁相反。
问题:一开始,像个线程并行执行,线程一获取lock1,线程2获取lock2.然后线程1继续执行,当休眠5s后获取开启第二个同步执行,锁是lock2,但这时候很可能线程2还没有执行完,所以还没有释放lock2,于是等待。线程2刚开始获取了lock2锁,休眠五秒后要去获取lock1锁,这时lock1锁还没释放,于是等待。两个线程就处于相互等待中,造成死锁。
第一步:通过Jstack命令来看看是否能检测到当前有死锁。

jstack 51789

a5e141ec3809ec146f79cbf361f9c2fb
从这里面个异常可以看出,

prio:当前线程的优先级
cpu:cpu耗时
os_prio:操作系统级别的优先级
tid:线程id
nid:系统内核的id
state:当前的状态,BLOCKED,表示阻塞。通常正常的状态是Running我们看到Thread-0和Thread-1线程的状态都是BLOCKED.
通过上面的信息,我们判断出两个线程的状态都是BLOCKED,可能有点问题,然后继续往下看。
f7a089585ddeb84156acc1c942155c95

我们从最后的一段可以看到这句话:Found one Java-level deadlock; 意思是找到一个死锁。死锁的线程号是Thread-0,Thread-1。

Thread-0:正在等待0x000000070e706ef8对象的锁,这个对象现在被Thread-1持有。

Thread-1:正在等待0x000000070e705c98对象的锁,这个对象现在正在被Thread-0持有。

最下面展示的是死锁的堆栈信息。死锁可能发生在DeadLockTest的第17行和第31行。通过这个提示,我们就可以找出死锁在哪里了。

第二步:使用jvisualvm查看死锁

如果使用jstack感觉不太方便,还可以使用jvisualvm,通过界面来查看,更加直观。

在程序代码启动的过程中,打开jvisualvm工具。
4f538e8fe63faf339d14f348fe8a8a10

找到当前运行的类,查看线程,就会看到最头上的一排红字:检测到死锁。然后点击“线程Dump”按钮,查看相信的线程死锁的信息。
0f3a21979c13be4cedc3a9525a90245d

这里可以找到线程私锁的详细信息,具体内容和上面使用Jstack命令查询的结果一样,这里实用工具更加方便。

4、JVM参数调优

jvm调优通常使用的是Jstat命令。一般每隔一段时间响应变慢就是gc导致的,通过前文gc算法得知清理空间的标记清除算法需要一定时间复制对象。

1. 垃圾回收统计 jstat -gc

jstat -gc 进程id

这个命令非常常用,在线上有问题的时候,可以通过这个命令来分析问题。

下面我们来测试一下,启动一个项目,然后在终端驶入jstat -gc 进程id,得到如下结果:
667e6ea6e64b10e3e0df572714037b26
上面的参数分别是什么意思呢?先识别参数的含义,然后根据参数进行分析

S0C: 第一个Survivor区的容量
S1C: 第二个Survivor区的容量
S0U: 第一个Survivor区已经使用的容量
S1U:第二个Survivor区已经使用的容量
EC: 新生代Eden区的容量
EU: 新生代Eden区已经使用的容量
OC: 老年代容量
OU:老年代已经使用的容量
MC: 方法区大小(元空间)
MU: 方法区已经使用的大小
CCSC:压缩指针占用空间
CCSU:压缩指针已经使用的空间
YGC: YoungGC已经发生的次数
YGCT: 这一次YoungGC耗时
FGC: Full GC发生的次数
FGCT: Full GC耗时
GCT: 总的GC耗时,等于YGCT+FGCT
连续观察GC变化的命令

jstat -gc 进程ID 间隔时间  打印次数

举个例子:我要打印10次gc信息,每次间隔1秒

jstat -gc 进程ID 1000 10

b6aff6384b6a1de762b2492f3df309b7
这样就连续打印了10次gc的变化,每次隔一秒。

这个命令是对整体垃圾回收情况的统计,下面将会差分处理。

2.堆内存统计

这个命令是打印堆内存的使用情况。

jstat -gccapacity 进程ID

11111

  • NGCMN:新生代最小容量
  • NGCMX:新生代最大容量
  • NGC:当前新生代容量
  • S0C:第一个Survivor区大小
  • S1C:第二个Survivor区大小
  • EC:Eden区的大小
  • OGCMN:老年代最小容量
  • OGCMX:老年代最大容量
  • OGC:当前老年代大小
  • OC: 当前老年代大小
  • MCMN: 最小元数据容量
  • MCMX:最大元数据容量
  • MC:当前元数据空间大小
  • CCSMN:最小压缩类空间大小
  • CCSMX:最大压缩类空间大小
  • CCSC:当前压缩类空间大小
  • YGC:年轻代gc次数
  • FGC:老年代GC次数

3.新生代垃圾回收统计

命令:

jstat -gcnew 进程ID [ 间隔时间  打印次数]

这个指的是当前某一次GC的内存情况
222png

  • S0C:第一个Survivor的大小
  • S1C:第二个Survivor的大小
  • S0U:第一个Survivor已使用大小
  • S1U:第二个Survivor已使用大小
  • TT: 对象在新生代存活的次数
  • MTT: 对象在新生代存活的最大次数
  • DSS: 期望的Survivor大小
  • EC:Eden区的大小
  • EU:Eden区的使用大小
  • YGC:年轻代垃圾回收次数
  • YGCT:年轻代垃圾回收消耗时间

4. 新生代内存统计

jstat -gcnewcapacity 进程ID

333
参数含义:

  • NGCMN:新生代最小容量
  • NGCMX:新生代最大容量
  • NGC:当前新生代容量
  • S0CMX:Survivor 1区最大大小
  • S0C:当前Survivor 1区大小
  • S1CMX:Survivor 2区最大大小
  • S1C:当前Survivor 2区大小
  • ECMX:最大Eden区大小
  • EC:当前Eden区大小
  • YGC:年轻代垃圾回收次数
  • FGC:老年代回收次数

5. 老年代垃圾回收统计

命令:

jstat -gcold 进程ID

参数含义:

  • MC:方法区大小
  • MU:方法区已使用大小
  • CCSC:压缩指针类空间大小
  • CCSU:压缩类空间已使用大小
  • OC:老年代大小
  • OU:老年代已使用大小
  • YGC:年轻代垃圾回收次数
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间,新生代+老年代
    444

6. 老年代内存统计

命令:

jstat -gcoldcapacity 进程ID

5

参数含义:

  • OGCMN:老年代最小容量
  • OGCMX:老年代最大容量
  • OGC:当前老年代大小
  • OC:老年代大小
  • YGC:年轻代垃圾回收次数
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间

7. 元数据空间统计

命令

jstat -gcmetacapacity 进程ID
  • MCMN:最小元数据容量
  • MCMX:最大元数据容量
  • MC:当前元数据空间大小
  • CCSMN:最小指针压缩类空间大小
  • CCSMX:最大指针压缩类空间大小
  • CCSC:当前指针压缩类空间大小
  • YGC:年轻代垃圾回收次数
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间

8.整体运行情况

命令:

jstat -gcutil 进程ID

77

  • S0:Survivor 1区当前使用比例
  • S1:Survivor 2区当前使用比例
  • E:Eden区使用比例
  • O:老年代使用比例
  • M:元数据区使用比例
  • CCS:指针压缩使用比例
  • YGC:年轻代垃圾回收次数
  • YGCT:年轻代垃圾回收消耗时间
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间
    通过查询上面的参数来分析整个堆空间。

Archas排查线上故障

https://blog.csdn.net/wdays83892469/article/details/124829491?spm=1001.2014.3001.5502

参考资料:
原文链接:https://blog.csdn.net/wdj_yyds/article/details/122442027

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值