在金融市场里,海量股票、债券、期货和其他日夜重复进行的实时交易变动,带来潜在巨大的机会和诱惑,通过交易策略、统计套利、对冲交易等手段,可能带来丰厚的利益 。
要抓住这种机会,需要对海量数据分析、挖掘,拿出有效的数学建模、精准的算法,甚至深度学习框架下大数据统计分析技术。主要两类交易类型:
1. 高频交易类:趋势跟踪、跨期套利、做市商等
2. 低频交易类:主动投资、统计套利、因子模型、股票阿尔法等
上面所有应用,离不开高速实时计算、低延迟响应的极致性能的超频服务器,西安坤隆计算机公司的推出的UltraLAB HF(极速型)、Alpha720(超级型)、GX(图灵超算型),针对金融计算应用特点和软件算法,提供目前市场上最快的服务器计算架构
(一) 高频交易、极速报盘应用硬件配置推荐
典型应用:量化交易、程序化交易、算法交易、金融实时交易等应用 。
开发工具:Python高级语言,R语言,Matlab,C++等 。
机器特点
金融高频交易应用对计算机的实时计算要求极高,每个环节响应快、传送快、计算快,通常是单核计算低延迟模式,机器放到专门的机房里,所有处理要在比别人更短时间完成 。
UltraLAB HF380/HF490内部配备工业级水冷散热系统,提供无与伦比的极致单核计算能力和全核同步超高频计算能力,同时网口具备比常规网卡超低延迟处理能力,保证整个环节的实时计算要求,减少延迟、高速计算,最大程度提高交易流程,从而捷足先登 。
硬件配置推荐
(二) 期权定价、对冲套利交易等应用配置推荐
典型应用:在股市、期货市场的期权定价建模、套利交易、对冲交易等 。
主要算法:Black—Scholes算法、蒙特卡洛算法、二叉树算法等 。
机器特点
这类金融计算特点,数据计算量巨大,实时性高,主要算法(Black-Scholes、蒙特卡洛、二叉树算法)多核并行计算加速比理想,UltraLAB Alpha720系列提供最强大计算能力(96核),同时具备海量高速存储,网口具备比常规网卡超低延迟处理能力,保证整个环节的实时高速计算要求,减少延迟,最大可能抓住转瞬即逝的机会,从而捷足先登 。
2.1 基于CPU并行计算架构---硬件配置推荐
2.2 基于GPU超算架构---硬件配置推荐
针对热门机器学习技术,给出基于深度学习架构的GPU超算服务器配置方案