O2O:A Perspective of Q-value Estimation on Offline-to-Online Reinforcement Learning

AAAI 2024
paper
code

Introduction

文章提出两个量化:标准化Q差异与肯达尔系数 τ \tau τ指标,从而分析出O2O(offline to Online) RL存在的问题是offline时期预训练的Q价值函数往往是不准确的,容易导致迁移到online后,在线微调过程中性能不稳定和缓慢提高(高方差缓慢改进),,如下图Figure 2所示。文章提出方法包括:1)价值函数更新过程中对动作添加扰动 2)增加Q函数更新频率。
在这里插入图片描述
在这里插入图片描述

Method

为了缓解Q值过估计问题,首先在针对Q函数的迭代过程中,对N个集成Q中的第i个价值网络,下一状态所采取的动作 a ′ ∼ π ( ⋅ ∣ s ′ ) a' \sim \pi(\cdot | s') aπ(s)加入一个clipped的噪声 ϵ ∼ C l i p ( N ( 0 , σ ) , − c , c ) \epsilon \sim Clip(\mathcal{N}(0, \sigma), -c, c) ϵClip(N(0,σ),c,c)
T Q ϕ i ( s , a ) ← r + γ ( Q ^ ϕ i ( s ′ , a ′ + ϵ ) − β log ⁡ π ( a ′ ∣ s ′ ) ) , 。 \mathcal{T}Q_{\phi_{i}}(\mathrm{s},\mathrm{a})\leftarrow r+\gamma\left(\hat{Q}_{\phi_{i}}(\mathrm{s}^{\prime},\mathrm{a}^{\prime}+\epsilon)-\beta\log\pi\left(\mathrm{a}^{\prime}\mid\mathrm{s}^{\prime}\right)\right),。 TQϕi(s,a)r+γ(Q^ϕi(s,a+ϵ)βlogπ(as)),
上式为伪代码第7行所提到的Equation3, 实现鼓励智能体探索不同的动作,缓解Q过估计问题,如上图Figure 1中最右侧图所示。方法第二改进便是增加Q的更新频率,保证Q值估计的准确性。具体便是为代码中第5行的 N u p c N_{upc} Nupc
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值