Pandas数据分析库

pandas数据分析库

中文参考文档 https://www.pypandas.cn/

pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

1 数据结构

pandas的主要数据结构是 Series(⼀维数据)与 DataFrame(⼆维数据)

1.1 Series
l = [0,1,7,9,np.NAN,None,1024,512]
# ⽆论是numpy中的NAN还是Python中的None在pandas中都以缺失数据NaN对待
s1 = pd.Series(data = l) # pandas⾃动添加索引
s2 = pd.Series(data = l,index = list('abcdefhi'),dtype='float32') # 指定⾏索引
# 传⼊字典创建,key⾏索引
s3 = pd.Series(data = {'a':99,'b':137,'c':149},name = 'Python_score')
display(s1,s2,s3)
1.2 DataFrame
# index 作为⾏索引,字典中的key作为列索引,创建了3*3的DataFrame表格⼆维数组
df1 = pd.DataFrame(data = {'Python':[99,107,122],'Math':[111,137,88],'En':
[68,108,43]},# key作为列索引
 index = ['张三','李四','Michael']) # ⾏索引

df2 = pd.DataFrame(data = np.random.randint(0,151,size = (5,3)),
 index = ['Danial','Brandon','softpo','Ella','Cindy'],# ⾏索引
 columns=['Python','Math','En'])# 列索引

2 数据查看

# 创建 shape(150,3)的⼆维标签数组结构DataFrame
df = pd.DataFrame(data = np.random.randint(0,151,size = (150,3)),
 index = None,# ⾏索引默认
 columns=['Python','Math','En'])# 列索引

# 查看其属性、概览和统计信息
df.head(10) # 显示头部10⾏,默认5个
df.tail(10) # 显示末尾10⾏,默认5个
df.shape # 查看形状,⾏数和列数
df.dtypes # 查看数据类型
df.index # ⾏索引
df.columns # 列索引
df.values # 对象值,⼆维ndarray数组
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值
df.info() # 查看列索引、数据类型、⾮空计数和内存信息

3 数据输入与输出

3.1 csv文件
df = DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
 columns=['IT','化⼯','⽣物','教师','⼠兵'])

# 保存到当前路径下,⽂件命名是:salary.csv。csv逗号分割值⽂件格式
df.to_csv('./salary.csv',
 sep = ';', # ⽂本分隔符,默认是逗号
 header = True,# 是否保存列索引
 index = True) # 是否保存⾏索引,保存⾏索引,⽂件被加载时,默认⾏索引会作为⼀列

# 加载
pd.read_csv('./salary.csv',
 sep = ';',# 默认是逗号
 header = [0],#指定列索引
 index_col=0) # 指定⾏索引

pd.read_table('./salary.csv', # 和read_csv类似,读取限定分隔符的⽂本⽂件
 sep = ';',
 header = [0],#指定列索引
 index_col=1) # 指定⾏索引,IT作为⾏索引
3.2 Excel文件

pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple

df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
 columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考试成绩
 columns=['Python','Tensorflow','Keras'])

# 保存到当前路径下,⽂件命名是:salary.xlsx
df1.to_excel('./salary.xlsx',
 sheet_name = 'salary',# Excel中⼯作表的名字
 header = True,# 是否保存列索引
 index = False) # 是否保存⾏索引,保存⾏索引
pd.read_excel('./salary.xlsx',
 sheet_name=0,# 读取哪⼀个Excel中⼯作表,默认第⼀个
 header = 0,# 使⽤第⼀⾏数据作为列索引
 names = list('ABCDE'),# 替换⾏索引
 index_col=1)# 指定⾏索引,B作为⾏索引

# ⼀个Excel⽂件中保存多个⼯作表
with pd.ExcelWriter('./data.xlsx') as writer:
 df1.to_excel(writer,sheet_name='salary',index = False)
 df2.to_excel(writer,sheet_name='score',index = False)
pd.read_excel('./data.xlsx',
 sheet_name='salary') # 读取Excel中指定名字的⼯作表    
3.3 SQL

pip install sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pymysql -i https://pypi.tuna.tsinghua.edu.cn/simple

from sqlalchemy import create_engine
df = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考试成绩
 columns=['Python','Tensorflow','Keras'])
# 数据库连接
conn = create_engine('mysql+pymysql://root:12345678@localhost/pandas?charset=UTF8MB4')
# 保存到数据库
df.to_sql('score',#数据库中表名
 conn,# 数据库连接
 if_exists='append')#如果表名存在,追加数据
# 从数据库中加载
pd.read_sql('select * from score limit 10', # sql查询语句
 conn, # 数据库连接
 index_col='Python') # 指定⾏索引名
3.4 HDF5

pip install tables -i https://pypi.tuna.tsinghua.edu.cn/simple

df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
 columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考
试成绩
 columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,⽂件命名是:data.h5
df1.to_hdf('./data.h5',key='salary') # 保存数据的key,标记
df2.to_hdf('./data.h5',key = 'score')
pd.read_hdf('./data.h5',
 key = 'salary')#获取指定的标记、key的数据

4 数据选取

4.1 获取数据
df = pd.DataFrame(data = np.random.randint(0,150,size = [150,3]),# 计算机科⽬的考试成绩
 columns=['Python','Tensorflow','Keras'])
df['Python'] # 获取单列,Series
df.Python # 获取单列,Series
df[['Python','Keras']] # 获取多列,DataFrame
df[3:15] # ⾏切⽚
4.2 标签选择
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签
 columns=['Python','Tensorflow','Keras'])
df.loc[['A','C','D','F']] # 选取指定⾏标签数据。
df.loc['A':'E',['Python','Keras']] # 根据⾏标签切⽚,选取指定列标签的数据
df.loc[:,['Keras','Tensorflow']] # :默认保留所有⾏
df.loc['E'::2,'Python':'Tensorflow'] # ⾏切⽚从标签E开始每2个中取⼀个,列标签进⾏切⽚
df.loc['A','Python'] # 选取标量值
4.3 位置选择
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签
 columns=['Python','Tensorflow','Keras'])
df.iloc[4] # ⽤整数位置选择。
df.iloc[2:8,0:2] # ⽤整数切⽚,类似NumPy
df.iloc[[1,3,5],[0,2,1]] # 整数列表按位置切⽚
df.iloc[1:3,:] # ⾏切⽚
df.iloc[:,:2] # 列切⽚
df.iloc[0,2] # 选取标量值
4.4 boolean索引
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬
cond1 = df.Python > 100 # 判断Python分数是否⼤于100,返回值是boolean类型的Series
df[cond1] # 返回Python分数⼤于100分的⽤户所有考试科⽬数据
cond2 = (df.Python > 50) & (df['Keras'] > 50) # &与运算
df[cond2] # 返回Python和Keras同时⼤于50分的⽤户的所有考试科⽬数据
df[df > 50]# 选择DataFrame中满⾜条件的值,如果满⾜返回值,不然返回空数据NaN
df[df.index.isin(['A','C','F'])] # isin判断是否在数组中,返回也是boolean类型值
4.5 赋值操作
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬
s = pd.Series(data = np.random.randint(0,150,size =
9),index=list('BCDEFGHIJ'),name = 'PyTorch')
df['PyTorch'] = s # 增加⼀列,DataFrame⾏索引⾃动对⻬
df.loc['A','Python'] = 256 # 按标签赋值
df.iloc[3,2] = 512 # 按位置赋值
df.loc[:,'Python'] = np.array([128]*10) # 按NumPy数组进⾏赋值
df[df >= 128] = -df # 按照where条件进⾏赋值,⼤于等于128变成原来的负数,否则不变

5 数据集成

pandas 提供了多种将 Series、DataFrame 对象组合在⼀起的功能

5.1 concat数据串联
df1 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬

df2 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
 index = list('KLMNOPQRST'),# ⾏标签,⽤户
 columns=['Python','Tensorflow','Keras']) # 考试科⽬

df3 = pd.DataFrame(data = np.random.randint(0,150,size = (10,2)),index = list('ABCDEFGHIJ'),
 columns=['PyTorch','Paddle'])

display(df1,df2,df3)

pd.concat([df1,df2],axis = 0) # df1和df2⾏串联,df2的⾏追加df1⾏后⾯
df1.append(df2) # 在df1后⾯追加df2
pd.concat([df1,df3],axis = 1) # df1和df2列串联,df2的列追加到df1列后⾯
5.2 插入
df = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
 index = list('ABCDEFGHIJ'),
 columns = ['Python','Keras','Tensorflow'])
df.insert(loc = 1,column='Pytorch',value=1024) # 插⼊列
# 对⾏的操作,使⽤追加append,默认在最后⾯,⽆法指定位置
# 如果想要在指定位置插⼊⾏:切割-添加-合并
5.3 join SQL风格合并

数据集的合并(merge)或连接(join)运算是通过⼀个或者多个键将数据链接起来的。

# 表⼀中记录的是name和体重信息
df1 = pd.DataFrame(data = {'name':
['softpo','Daniel','Brandon','Ella'],'weight':[70,55,75,65]})
# 表⼆中记录的是name和身⾼信息
df2 = pd.DataFrame(data = {'name':
['softpo','Daniel','Brandon','Cindy'],'height':[172,170,170,166]})
df3 = pd.DataFrame(data = {'名字':
['softpo','Daniel','Brandon','Cindy'],'height':[172,170,170,166]})
# 根据共同的name将俩表的数据,进⾏合并
pd.merge(df1,df2,
 how = 'inner',# 内合并代表两对象交集
 on = 'name')
pd.merge(df1,df3,
 how = 'outer',# 全外连接,两对象并集
 left_on = 'name',# 左边DataFrame使⽤列标签 name进⾏合并
 right_on = '名字')# 右边DataFrame使⽤列标签 名字进⾏合并
# 创建10名学⽣的考试成绩
df4 = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Keras','Tensorflow'])
# 计算每位学⽣各科平均分,转换成DataFrame
score_mean = pd.DataFrame(df4.mean(axis = 1).round(1),columns=['平均分'])
# 将平均分和df3使⽤merge进⾏合并,它俩有共同的⾏索引
pd.merge(left = df4,right = score_mean,
 left_index=True,# 左边DataFrame使⽤⾏索引进⾏合并
 right_index=True)# 右边的DataFrame使⽤⾏索引进⾏合并

6 数据清洗

df = pd.DataFrame(data = {'color':
['red','blue','red','green','blue',None,'red'],
 'price':[10,20,10,15,20,0,np.NaN]})
# 1、重复数据过滤
df.duplicated() # 判断是否存在重复数据
df.drop_duplicates() # 删除重复数据
# 2、空数据过滤
df.isnull() # 判断是否存在空数据,存在返回True,否则返回False
df.dropna(how = 'any') # 删除空数据
df.fillna(value=1111) # 填充空数据
# 3、指定⾏或者列过滤
del df['color'] # 直接删除某列
df.drop(labels = ['price'],axis = 1)# 删除指定列
df.drop(labels = [0,1,5],axis = 0) # 删除指定⾏
# 4、函数filter使⽤
df = pd.DataFrame(np.array(([3,7,1], [2, 8, 256])),
 index=['dog', 'cat'],
 columns=['China', 'America', 'France'])
df.filter(items=['China', 'France'])
# 根据正则表达式删选列标签
df.filter(regex='a$', axis=1)
# 选择⾏中包含og
df.filter(like='og', axis=0)
# 5、异常值过滤
df2 = pd.DataFrame(data = np.random.randn(10000,3)) # 正态分布数据
# 3σ过滤异常值,σ即是标准差
cond = (df2 > 3*df2.std()).any(axis = 1)
index = df2[cond].index # 不满⾜条件的⾏索引
df2.drop(labels=index,axis = 0) # 根据⾏索引,进⾏数据删除

7 数据转换

7.1轴和元素 替换
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
#1、重命名轴索引
df.rename(index = {'A':'AA','B':'BB'},columns = {'Python':'⼈⼯智能'})
# 2、替换值
df.replace(3,1024) #将3替换为1024
df.replace([0,7],2048) # 将0和7替换为2048
df.replace({0:512,np.nan:998}) # 根据字典键值对进⾏替换
df.replace({'Python':2},-1024) # 将Python这⼀列中等于2的,替换为-1024
7.2 map Series元素改变
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
# 1、map批量元素改变,Series专有
df['Keras'].map({1:'Hello',5:'World',7:'AI'}) # 字典映射
df['Python'].map(lambda x:True if x >=5 else False) # 隐式函数映射
def convert(x): # 显示函数映射
 if x%3 == 0:
 return True
 elif x%3 == 1:
 return False
df['Tensorflow'].map(convert)
7.3 apply元素改变,支持Series和DataFrame
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
# 1、apply 应⽤⽅法数据转换,通⽤
# Series,其中x是Series中元素
df['Keras'].apply(lambda x:True if x >5 else False)
# DataFrame,其中的x是DataFrame中列或者⾏,是Series
df.apply(lambda x : x.median(),axis = 0) # 列的中位数
def convert(x): # ⾃定义⽅法
 return (x.mean().round(1),x.count())
df.apply(convert,axis = 1) # ⾏平均值,计数
# 2、applymap DataFrame专有
df.applymap(lambda x : x + 100) # 计算DataFrame中每个元素
7.4 transform
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
# 1、⼀列执⾏多项计算
df['Python'].transform([np.sqrt,np.exp]) # Series处理
def convert(x):
 if x.mean() > 5:
 x *= 10
 else:
 x *= -10
 return x
# 2、多列执⾏不同计算
df.transform({'Python':convert,'Tensorflow':np.max,'Keras':np.min}) # DataFrame
处理
7.5 重排随机抽样哑变量
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
ran = np.random.permutation(10) # 随机重排
df.take(ran) # 重排DataFrame
df.take(np.random.randint(0,10,size = 15)) # 随机抽样
# 哑变量,独热编码,1表示有,0表示没有
df = pd.DataFrame({'key':['b','b','a','c','a','b']})
pd.get_dummies(df,prefix='',prefix_sep='')

8 数据重塑

df = pd.DataFrame(data = np.random.randint(0,100,size = (10,3)),
 index = list('ABCDEFHIJK'),
 columns=['Python','Tensorflow','Keras'])
df.T # 转置
df2 = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
 index = pd.MultiIndex.from_product([list('ABCDEFHIJK'),['期
中','期末']]),#多层索引
 columns=['Python','Tensorflow','Keras'])
df2.unstack(level = -1) # ⾏旋转成列,level指定哪⼀层,进⾏变换
df2.stack() # 列旋转成⾏
df2.stack().unstack(level = 1) # ⾏列互换
# 多层索引DataFrame数学计算
df2.mean() # 各学科平均分
df2.mean(level=0) # 各学科,每个⼈期中期末平均分
df2.mean(level = 1) # 各学科,期中期末所有⼈平均分

9 数学和统计方法

9.1 简单统计指标
df = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
 index = list('ABCDEFHIJKLMNOPQRSTU'),
 columns=['Python','Tensorflow','Keras'])
# 1、简单统计指标
df.count() # ⾮NA值的数量
df.max(axis = 0) #轴0最⼤值,即每⼀列最⼤值
df.min() #默认计算轴0最⼩值
df.median() # 中位数
df.sum() # 求和
df.mean(axis = 1) #轴1平均值,即每⼀⾏的平均值
df.quantile(q = [0.2,0.4,0.8]) # 分位数
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值
9.2 索引标签、位置获取
df['Python'].argmin() # 计算最⼩值位置
df['Keras'].argmax() # 最⼤值位置
df.idxmax() # 最⼤值索引标签
df.idxmin() # 最⼩值索引标签
9.3 更多统计指标
# 3、更多统计指标
df['Python'].value_counts() # 统计元素出现次数
df['Keras'].unique() # 去重
df.cumsum() # 累加
df.cumprod() # 累乘
df.std() # 标准差
df.var() # ⽅差
df.cummin() # 累计最⼩值
df.cummax() # 累计最⼤值
df.diff() # 计算差分
df.pct_change() # 计算百分⽐变化
9.4 高级统计指标
# 4、⾼级统计指标
df.cov() # 属性的协⽅差
df['Python'].cov(df['Keras']) # Python和Keras的协⽅差
df.corr() # 所有属性相关性系数
df.corrwith(df['Tensorflow']) # 单⼀属性相关性系数

10 数据排序

df = pd.DataFrame(data = np.random.randint(0,30,size = (30,3)),
 index = list('qwertyuioijhgfcasdcvbnerfghjcf'),
 columns = ['Python','Keras','Pytorch'])
# 1、索引列名排序
df.sort_index(axis = 0,ascending=True) # 按索引排序,降序
df.sort_index(axis = 1,ascending=False) #按列名排序,升序
# 2、属性值排序
df.sort_values(by = ['Python']) #按Python属性值排序
df.sort_values(by = ['Python','Keras'])#先按Python,再按Keras排序
# 3、返回属性n⼤或者n⼩的值
df.nlargest(10,columns='Keras') # 根据属性Keras排序,返回最⼤10个数据
df.nsmallest(5,columns='Python') # 根据属性Python排序,返回最⼩5个数据

11 分箱操作

分箱操作就是将连续数据转换为分类对应物的过程。⽐如将连续的身⾼数据划分为:矮中⾼。分箱操作分为等距分箱和等频分箱。

df = pd.DataFrame(data = np.random.randint(0,150,size = (100,3)),
 columns=['Python','Tensorflow','Keras'])
# 1、等宽分箱
pd.cut(df.Python,bins = 3)
# 指定宽度分箱
pd.cut(df.Keras,#分箱数据
 bins = [0,60,90,120,150],#分箱断点
 right = False,# 左闭右开
 labels=['不及格','中等','良好','优秀'])# 分箱后分类
# 2、等频分箱
pd.qcut(df.Python,q = 4,# 4等分
 labels=['差','中','良','优']) # 分箱后分类

12 分组聚合

12.1 分组
# 准备数据
df = pd.DataFrame(data = {'sex':np.random.randint(0,2,size = 300), # 0男,1⼥
 'class':np.random.randint(1,9,size = 300),#1~8⼋个班
 'Python':np.random.randint(0,151,size = 300),#Python成绩
 'Keras':np.random.randint(0,151,size =300),#Keras成绩
 'Tensorflow':np.random.randint(0,151,size=300),
 'Java':np.random.randint(0,151,size = 300),
 'C++':np.random.randint(0,151,size = 300)})
df['sex'] = df['sex'].map({0:'男',1:'⼥'}) # 将0,1映射成男⼥
# 1、分组->可迭代对象
# 1.1 先分组再获取数据
g = df.groupby(by = 'sex')[['Python','Java']] # 单分组
for name,data in g:
 print('组名:',name)
 print('数据:',data)
df.groupby(by = ['class','sex'])[['Python']] # 多分组
# 1.2 对⼀列值进⾏分组
df['Python'].groupby(df['class']) # 单分组
df['Keras'].groupby([df['class'],df['sex']]) # 多分组
# 1.3 按数据类型分组
df.groupby(df.dtypes,axis = 1)
# 1.4 通过字典进⾏分组
m =
{'sex':'category','class':'category','Python':'IT','Keras':'IT','Tensorflow':'I
T','Java':'IT','C++':'IT'}
for name,data in df.groupby(m,axis = 1):
 print('组名',name)
 print('数据',data)
12.2 分组聚合
# 2、分组直接调⽤函数进⾏聚合
# 按照性别分组,其他列均值聚合
df.groupby(by = 'sex').mean().round(1) # 保留1位⼩数
# 按照班级和性别进⾏分组,Python、Keras的最⼤值聚合
df.groupby(by = ['class','sex'])[['Python','Keras']].max()
# 按照班级和性别进⾏分组,计数聚合。统计每个班,男⼥⼈数
df.groupby(by = ['class','sex']).size()
# 基本描述性统计聚合
df.groupby(by = ['class','sex']).describe()
12.3 分组聚合apply、transform
# 3、分组后调⽤apply,transform封装单⼀函数计算
# 返回分组结果
df.groupby(by = ['class','sex'])[['Python','Keras']].apply(np.mean).round(1)
def normalization(x):
 return (x - x.min())/(x.max() - x.min()) # 最⼤值最⼩值归⼀化
# 返回全数据,返回DataFrame.shape和原DataFrame.shape⼀样。
df.groupby(by = ['class','sex'])
[['Python','Tensorflow']].transform(normalization).round(3)
12.4 分组聚合agg
# 4、agg 多中统计汇总操作
# 分组后调⽤agg应⽤多种统计汇总
df.groupby(by = ['class','sex'])
[['Tensorflow','Keras']].agg([np.max,np.min,pd.Series.count])
# 分组后不同属性应⽤多种不同统计汇总
df.groupby(by = ['class','sex'])[['Python','Keras']].agg({'Python':[('最⼤值',np.max),('最⼩值',np.min)],
 'Keras':[('计数',pd.Series.count),('中位数',np.median)]})
12.5 透视表pivot_table
# 5、透视表
# 透视表也是⼀种分组聚合运算
def count(x):
 return len(x)
df.pivot_table(values=['Python','Keras','Tensorflow'],# 要透视分组的值
 index=['class','sex'], # 分组透视指标
 aggfunc={'Python':[('最⼤值',np.max)], # 聚合运算
 'Keras':[('最⼩值',np.min),('中位数',np.median)],
 'Tensorflow':[('最⼩值',np.min),('平均值',np.mean),('计数',count)]})

13 时间序列

13.1 时间戳操作
# 1、创建⽅法
pd.Timestamp('2020-8-24 12')# 时刻数据
pd.Period('2020-8-24',freq = 'M') # 时期数据
index = pd.date_range('2020.08.24',periods=5,freq = 'M') # 批量时刻数据
pd.period_range('2020.08.24',periods=5,freq='M') # 批量时期数据
ts = pd.Series(np.random.randint(0,10,size = 5),index = index) # 时间戳索引Series

# 2、转换⽅法
pd.to_datetime(['2020.08.24','2020-08-24','24/08/2020','2020/8/24'])
pd.to_datetime([1598582232],unit='s')
dt = pd.to_datetime([1598582420401],unit = 'ms') # 世界标准时间
dt + pd.DateOffset(hours = 8) # 东⼋区时间
dt + pd.DateOffset(days = 100) # 100天后⽇期
13.2 时间戳索引
index = pd.date_range("2020-8-24", periods=200, freq="D")
ts = pd.Series(range(len(index)), index=index)
# str类型索引
ts['2020-08-30'] # ⽇期访问数据
ts['2020-08-24':'2020-09-3'] # ⽇期切⽚
ts['2020-08'] # 传⼊年⽉
ts['2020'] # 传⼊年
# 时间戳索引
ts[pd.Timestamp('2020-08-30')]
ts[pd.Timestamp('2020-08-24'):pd.Timestamp('2020-08-30')] # 切⽚
ts[pd.date_range('2020-08-24',periods=10,freq='D')]
# 时间戳索引属性
ts.index.year # 获取年
ts.index.dayofweek # 获取星期⼏
ts.index.weekofyear # ⼀年中第⼏个星期⼏
13.3 时间序列常用方法
index = pd.date_range('8/1/2020', periods=365, freq='D')
ts = pd.Series(np.random.randint(0, 500, len(index)), index=index)
# 1、移动
ts.shift(periods = 2) # 数据后移
ts.shift(periods = -2) # 数据前移
# ⽇期移动
ts.shift(periods = 2,freq = pd.tseries.offsets.Day()) # 天移动
ts.tshift(periods = 1,freq = pd.tseries.offsets.MonthOffset()) #⽉移动
# 2、频率转换
ts.asfreq(pd.tseries.offsets.Week()) # 天变周
ts.asfreq(pd.tseries.offsets.MonthEnd()) # 天变⽉
ts.asfreq(pd.tseries.offsets.Hour(),fill_value = 0) #天变⼩时,⼜少变多,fill_value为填充值
# 3、重采样
# resample 表示根据⽇期维度进⾏数据聚合,可以按照分钟、⼩时、⼯作⽇、周、⽉、年等来作为⽇期维度
ts.resample('2W').sum() # 以2周为单位进⾏汇总
ts.resample('3M').sum().cumsum() # 以季度为单位进⾏汇总
# 4、DataFrame重采样
d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
 'volume': [50, 60, 40, 100, 50, 100, 40, 50],
 'week_starting':pd.date_range('24/08/2020',periods=8,freq='W')})
df1 = pd.DataFrame(d)
df1.resample('M',on = 'week_starting').apply(np.sum)
df1.resample('M',on = 'week_starting').agg({'price':np.mean,'volume':np.sum})
days = pd.date_range('1/8/2020', periods=4, freq='D')
data2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
 'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
df2 = pd.DataFrame(data2,
 index=pd.MultiIndex.from_product([days,
['morning','afternoon']]))
df2.resample('D', level=0).sum()
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值