5.4 pandas数据分析库

1. pandas

  • Python在数据处理和准备⽅⾯⼀直做得很好,但在数据分析和建模⽅⾯就差⼀些。pandas帮助填补了这⼀空⽩,使您能够在Python中执⾏整个数据分析⼯作流程,⽽不必切换到更特定于领域的语⾔,如R。

  • pandas是 Python 的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进⾏数据分析的必备⾼级⼯具。

  • pandas的主要数据结构是 Series(⼀维数据)与 DataFrame (⼆维数据),这两种数据结构⾜以处理⾦融、统计、社会科学、⼯程等领域⾥的⼤多数案例

  • 处理数据⼀般分为⼏个阶段:数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas 是处理数据的理想⼯具。

2. 数据结构

2.1 Series

⽤列表⽣成 Series时,Pandas 默认⾃动⽣成整数索引,也可以指定索引

l = [0,1,7,9,np.NAN,None,1024,512]
# ⽆论是numpy中的NAN还是Python中的None在pandas中都以缺失数据NaN对待
s1 = pd.Series(data = l) # pandas⾃动添加索引
s2 = pd.Series(data = l,index = list('abcdefhi'),dtype='float32') # 指定⾏索引
# 传⼊字典创建,key⾏索引
s3 = pd.Series(data = {'a':99,'b':137,'c':149},name = 'Python_score')
display(s1,s2,s3)

2.2 DataFrame

DataFrame是由多种类型的列构成的⼆维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典。

# index 作为⾏索引,字典中的key作为列索引,创建了3*3的DataFrame表格⼆维数组
df1 = pd.DataFrame(data = {'Python':[99,107,122],'Math':[111,137,88],'En':
[68,108,43]},# key作为列索引
index = ['张三','李四','Michael']) # ⾏索引
df2 = pd.DataFrame(data = np.random.randint(0,151,size = (5,3)),
index = ['Danial','Brandon','softpo','Ella','Cindy'],# ⾏索引
columns=['Python','Math','En'])# 列索引

2.3 数据查看

查看DataFrame的常⽤属性和DataFrame的概览和统计信息

df = pd.DataFrame(data = np.random.randint(0,151,size = (150,3)),
index = None,# ⾏索引默认
columns=['Python','Math','En'])# 列索引
# 查看其属性、概览和统计信息
df.head(10) # 显示头部10⾏,默认5个
df.tail(10) # 显示末尾10⾏,默认5个
df.shape # 查看形状,⾏数和列数
df.dtypes # 查看数据类型
df.index # ⾏索引
df.columns # 列索引
df.values # 对象值,⼆维ndarray数组
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值
df.info() # 查看列索引、数据类型、⾮空计数和内存信息

2.4 数据输入与输出

2.4.1 csv

df = DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
columns=['IT','化⼯','⽣物','教师','⼠兵'])
# 保存到当前路径下,⽂件命名是:salary.csv。csv逗号分割值⽂件格式
df.to_csv('./salary.csv',
sep = ';', # ⽂本分隔符,默认是逗号
header = True,# 是否保存列索引
index = True) # 是否保存⾏索引,保存⾏索引,⽂件被加载时,默认⾏索引会作为⼀列
# 加载
pd.read_csv('./salary.csv',
sep = ';',# 默认是逗号
header = [0],#指定列索引
index_col=0) # 指定⾏索引
pd.read_table('./salary.csv', # 和read_csv类似,读取限定分隔符的⽂本⽂件
sep = ';',
header = [0],#指定列索引
index_col=1) # 指定⾏索引,IT作为⾏索引

2.4.2 Excel

pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考
试成绩
columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,⽂件命名是:salary.xls
df1.to_excel('./salary.xls',
sheet_name = 'salary',# Excel中⼯作表的名字
header = True,# 是否保存列索引
index = False) # 是否保存⾏索引,保存⾏索引
pd.read_excel('./salary.xls',
sheet_name=0,# 读取哪⼀个Excel中⼯作表,默认第⼀个
header = 0,# 使⽤第⼀⾏数据作为列索引
names = list('ABCDE'),# 替换⾏索引
index_col=1)# 指定⾏索引,B作为⾏索引
# ⼀个Excel⽂件中保存多个⼯作表
with pd.ExcelWriter('./data.xlsx') as writer:
df1.to_excel(writer,sheet_name='salary',index = False)
df2.to_excel(writer,sheet_name='score',index = False)
pd.read_excel('./data.xlsx',
sheet_name='salary') # 读取Excel中指定名字的⼯作表

2.4.3 SQL

pip install sqlalchemy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pymysql -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
SQLAlchemy是Python编程语⾔下的⼀款开源软件;提供了SQL⼯具包及对象关系映射(ORM)⼯具。

数据库引擎配置

import pandas as pd
from sqlalchemy import create_engine
df = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考试
成绩
columns=['Python','Tensorflow','Keras'])
# 数据库连接
conn = create_engine('mysql+pymysql://root:12345678@localhost/pandas?
charset=UTF8MB4')
# 保存到数据库
df.to_sql('score',#数据库中表名
conn,# 数据库连接
if_exists='append')#如果表名存在,追加数据
# 从数据库中加载
pd.read_sql('select * from score limit 10', # sql查询语句
conn, # 数据库连接
index_col='Python') # 指定⾏索引名

3.4.4 HDF5

pip install tables -i https://pypi.tuna.tsinghua.edu.cn/simple

HDF5是⼀个独特的技术套件,可以管理⾮常⼤和复杂的数据收集。

HDF5,可以存储不同类型数据的⽂件格式,后缀通常是.h5,它的结构是层次性的。

⼀个HDF5⽂件可以被看作是⼀个组包含了各类不同的数据集。
在这里插入图片描述
对于HDF5⽂件中的数据存储,有两个核⼼概念:group 和 dataset

dataset 代表数据集,⼀个⽂件当中可以存放不同种类的数据集,这些数据集如何管理,就⽤到了group

最直观的理解,可以参考我们的⽂件管理系统,不同的⽂件位于不同的⽬录下。

⽬录就是HDF5中的group, 描述了数据集dataset的分类信息,通过group 有效的将多种dataset 进⾏管理和区分;⽂件就是HDF5中的dataset, 表示的是具体的数据。

import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]), # 薪资情况
columns=['IT','化⼯','⽣物','教师','⼠兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),# 计算机科⽬的考
试成绩
columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,⽂件命名是:data.h5
df1.to_hdf('./data.h5',key='salary') # 保存数据的key,标记
df2.to_hdf('./data.h5',key = 'score')
pd.read_hdf('./data.h5',
key = 'salary')#获取指定的标记、key的数据

5. 数据选取

5.1 获取数据

df = pd.DataFrame(data = np.random.randint(0,150,size = [150,3]),
columns=['Python','Tensorflow','Keras'])
df['Python'] # 获取单列,Series
df.Python # 获取单列,Series
df[['Python','Keras']] # 获取多列,DataFrame
df[3:15] # ⾏切⽚

5.2 标签选择

df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
index = list('ABCDEFGHIJ'),# ⾏标签
columns=['Python','Tensorflow','Keras'])

df.loc[['A','C','D','F']] # 选取指定⾏标签数据。
df.loc['A':'E',['Python','Keras']] # 根据⾏标签切⽚,选取指定列标签的数据
df.loc[:,['Keras','Tensorflow']] # :默认保留所有⾏
df.loc['E'::2,'Python':'Tensorflow'] # ⾏切⽚从标签E开始每2个中取⼀个,列标签进⾏切⽚
df.loc['A','Python'] # 选取标量值

5.3 位置选择

df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
	index = list('ABCDEFGHIJ'),# ⾏标签
	columns=['Python','Tensorflow','Keras'])
	
df.iloc[4] # ⽤整数位置选择。
df.iloc[2:8,0:2] # ⽤整数切⽚,类似NumPy
df.iloc[[1,3,5],[0,2,1]] # 整数列表按位置切⽚
df.iloc[1:3,:] # ⾏切⽚
df.iloc[:,:2] # 列切⽚
df.iloc[0,2] # 选取标量值

5.4 boolean索引

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
	index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
	columns=['Python','Tensorflow','Keras']) # 考试科⽬
cond1 = df.Python > 100 # 判断Python分数是否⼤于100,返回值是boolean类型的Series
df[cond1] # 返回Python分数⼤于100分的⽤户所有考试科⽬数据
cond2 = (df.Python > 50) & (df['Keras'] > 50) # &与运算
df[cond2] # 返回Python和Keras同时⼤于50分的⽤户的所有考试科⽬数据
df[df > 50]# 选择DataFrame中满⾜条件的值,如果满⾜返回值,不然返回空数据NaN
df[df.index.isin(['A','C','F'])] # isin判断是否在数组中,返回也是boolean类型值

5.5 赋值操作

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
	index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
	columns=['Python','Tensorflow','Keras']) # 考试科⽬
s = pd.Series(data = np.random.randint(0,150,size =
9),index=list('BCDEFGHIJ'),name = 'PyTorch')
df['PyTorch'] = s # 增加⼀列,DataFrame⾏索引⾃动对⻬
df.loc['A','Python'] = 256 # 按标签赋值
df.iloc[3,2] = 512 # 按位置赋值
df.loc[:,'Python'] = np.array([128]*10) # 按NumPy数组进⾏赋值
df[df >= 128] = -df # 按照where条件进⾏赋值,⼤于等于128变成原来的负数,否则不变

6. 数据集成

6.1 concat数据串联

import pandas as pd
import numpy as np
df1 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
	index = list('ABCDEFGHIJ'),# ⾏标签,⽤户
	columns=['Python','Tensorflow','Keras']) # 考试科⽬
df2 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科⽬的考试成绩
	index = list('KLMNOPQRST'),# ⾏标签,⽤户
	columns=['Python','Tensorflow','Keras']) # 考试科⽬
df3 = pd.DataFrame(data = np.random.randint(0,150,size = (10,2)),
	index = list('ABCDEFGHIJ'),
	columns=['PyTorch','Paddle'])
pd.concat([df1,df2],axis = 0) # df1和df2⾏串联,df2的⾏追加df2⾏后⾯
df1.append(df2) # 在df1后⾯追加df2
pd.concat([df1,df3],axis = 1) # df1和df2列串联,df2的列追加到df1列后⾯

6.2 插⼊

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
	index = list('ABCDEFGHIJ'),
	columns = ['Python','Keras','Tensorflow'])
df.insert(loc = 1,column='Pytorch',value=1024) # 插⼊列

对⾏的操作,使⽤追加append,默认在最后⾯,⽆法指定位置;
如果想要在指定位置插⼊⾏:切割-添加-合并

6.3 Join SQL⻛格合并

pandas的merge函数是数据集进⾏join运算的主要切⼊点。

import pandas as pd
import numpy as np
# 表⼀中记录的是name和体重信息
df1 = pd.DataFrame(data = {'name':
['softpo','Daniel','Brandon','Ella'],'weight':[70,55,75,65]})
# 表⼆中记录的是name和身⾼信息
df2 = pd.DataFrame(data = {'name':
['softpo','Daniel','Brandon','Cindy'],'height':[172,170,170,166]})
df3 = pd.DataFrame(data = {'名字':
['softpo','Daniel','Brandon','Cindy'],'height':[172,170,170,166]})
# 根据共同的name将俩表的数据,进⾏合并
pd.merge(df1,df2,
	how = 'inner',# 内合并代表两对象交集
	on = 'name')
pd.merge(df1,df3,
	how = 'outer',# 全外连接,两对象并集
	left_on = 'name',# 左边DataFrame使⽤列标签 name进⾏合并
	right_on = '名字')# 右边DataFrame使⽤列标签 名字进⾏合并
# 创建10名学⽣的考试成绩
df4 = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Keras','Tensorflow'])
# 计算每位学⽣各科平均分,转换成DataFrame
score_mean = pd.DataFrame(df4.mean(axis = 1).round(1),columns=['平均分'])
# 将平均分和df3使⽤merge进⾏合并,它俩有共同的⾏索引
pd.merge(left = df4,right = score_mean,
	left_index=True,# 左边DataFrame使⽤⾏索引进⾏合并
	right_index=True)# 右边的DataFrame使⽤⾏索引进⾏合并

7. 数据清洗

import numpy as np
import pandas as pd
df = pd.DataFrame(data = {'color':
['red','blue','red','green','blue',None,'red'],
	'price':[10,20,10,15,20,0,np.NaN]})
	
# 1、重复数据过滤
df.duplicated() # 判断是否存在重复数据
df.drop_duplicates() # 删除重复数据

# 2、空数据过滤
df.isnull() # 判断是否存在空数据,存在返回True,否则返回False
df.dropna(how = 'any') # 删除空数据
df.fillna(value=1111) # 填充空数据

# 3、指定⾏或者列过滤
del df['color'] # 直接删除某列
df.drop(labels = ['price'],axis = 1)# 删除指定列
df.drop(labels = [0,1,5],axis = 0) # 删除指定⾏

# 4、函数filter使⽤
df = pd.DataFrame(np.array(([3,7,1], [2, 8, 256])),
    index=['dog', 'cat'],
    columns=['China', 'America', 'France'])
df.filter(items=['China', 'France'])
# 根据正则表达式删选列标签
df.filter(regex='a$', axis=1)
# 选择⾏中包含og
df.filter(like='og', axis=0)

# 5、异常值过滤
df2 = pd.DataFrame(data = np.random.randn(10000,3)) # 正态分布数据
# 3σ过滤异常值,σ即是标准差
cond = (df2 > 3*df2.std()).any(axis = 1)
index = df2[cond].index # 不满⾜条件的⾏索引
df2.drop(labels=index,axis = 0) # 根据⾏索引,进⾏数据删除

8. 数据转换

8.1 轴和元素替换

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
#1、重命名轴索引
df.rename(index = {'A':'AA','B':'BB'},columns = {'Python':'⼈⼯智能'})

# 2、替换值
df.replace(3,1024) #将3替换为1024
df.replace([0,7],2048) # 将0和7替换为2048
df.replace({0:512,np.nan:998}) # 根据字典键值对进⾏替换
df.replace({'Python':2},-1024) # 将Python这⼀列中等于2的,替换为-1024

8.2 map Series元素改变

df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
    index = list('ABCDEFHIJK'),
    columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据

# 1、map批量元素改变,Series专有
df['Keras'].map({1:'Hello',5:'World',7:'AI'}) # 字典映射
df['Python'].map(lambda x:True if x >=5 else False) # 隐式函数映射
def convert(x): # 显示函数映射
    if x%3 == 0:
    	return True
    elif x%3 == 1:
    	return False
df['Tensorflow'].map(convert)

8.3 apply元素改变。

既⽀持 Series,也⽀持 DataFrame

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
# 1、apply 应⽤⽅法数据转换,通⽤
# Series,其中x是Series中元素
df['Keras'].apply(lambda x:True if x >5 else False)
# DataFrame,其中的x是DataFrame中列或者⾏,是Series
df.apply(lambda x : x.median(),axis = 0) # 列的中位数
def convert(x): # ⾃定义⽅法
	return (x.mean().round(1),x.count())
df.apply(convert,axis = 1) # ⾏平均值,计数

# 2、applymap DataFrame专有
df.applymap(lambda x : x + 100) # 计算DataFrame中每个元素

8.4 transform变形⾦刚

df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据

# 1、⼀列执⾏多项计算
df['Python'].transform([np.sqrt,np.exp]) # Series处理
def convert(x):
	if x.mean() > 5:
		x *= 10
	else:
		x *= -10
	return x
# 2、多列执⾏不同计算
df.transform({'Python':convert,'Tensorflow':np.max,'Keras':np.min}) # DataFrame处理

8.5 重排随机抽样哑变量

df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Tensorflow','Keras'])
ran = np.random.permutation(10) # 随机重排
df.take(ran) # 重排DataFrame
df.take(np.random.randint(0,10,size = 15)) # 随机抽样

# 哑变量,独热编码,1表示有,0表示没有
df = pd.DataFrame({'key':['b','b','a','c','a','b']})
pd.get_dummies(df,prefix='',prefix_sep='')

9. 数据重塑

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,100,size = (10,3)),
	index = list('ABCDEFHIJK'),
	columns=['Python','Tensorflow','Keras'])
df.T # 转置
df2 = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
	index = pd.MultiIndex.from_product([list('ABCDEFHIJK'),['期中','期末']]),#多层索引
	columns=['Python','Tensorflow','Keras'])
df2.unstack(level = -1) # ⾏旋转成列,level指定哪⼀层,进⾏变换
df2.stack() # 列旋转成⾏
df2.stack().unstack(level = 1) # ⾏列互换

# 多层索引DataFrame数学计算
df2.mean() # 各学科平均分
df2.mean(level=0) # 各学科,每个⼈期中期末平均分
df2.mean(level = 1) # 各学科,期中期末所有⼈平均分

10. 数学和统计⽅法

pandas对象拥有⼀组常⽤的数学和统计⽅法。它们属于汇总统计,对Series汇总计算获取mean、max值或者对DataFrame⾏、列汇总计算返回⼀个Series。

10.1 简单统计指标

df = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
	index = list('ABCDEFHIJKLMNOPQRSTU'),
	columns=['Python','Tensorflow','Keras'])
# 1、简单统计指标
df.count() # ⾮NA值的数量
df.max(axis = 0) #轴0最⼤值,即每⼀列最⼤值
df.min() #默认计算轴0最⼩值
df.median() # 中位数
df.sum() # 求和
df.mean(axis = 1) #轴1平均值,即每⼀⾏的平均值
df.quantile(q = [0.2,0.4,0.8]) # 分位数
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最⼩值、四分位数、最⼤值

10.2 索引标签、位置获取

# 2、索引位置
df['Python'].argmin() # 计算最⼩值位置
df['Keras'].argmax() # 最⼤值位置
df.idxmax() # 最⼤值索引标签
df.idxmin() # 最⼩值索引标签

10.3 更多统计指标

# 3、更多统计指标
df['Python'].value_counts() # 统计元素出现次数
df['Keras'].unique() # 去重
df.cumsum() # 累加
df.cumprod() # 累乘
df.std() # 标准差
df.var() # ⽅差
df.cummin() # 累计最⼩值
df.cummax() # 累计最⼤值
df.diff() # 计算差分
df.pct_change() # 计算百分⽐变化

10.4 ⾼级统计指标

# 4、⾼级统计指标
df.cov() # 属性的协⽅差
df['Python'].cov(df['Keras']) # Python和Keras的协⽅差
df.corr() # 所有属性相关性系数
df.corrwith(df['Tensorflow']) # 单⼀属性相关性系数

11. 数据排序

df = pd.DataFrame(data = np.random.randint(0,30,size = (30,3)),
	index = list('qwertyuioijhgfcasdcvbnerfghjcf'),
	columns = ['Python','Keras','Pytorch'])
# 1、索引列名排序
df.sort_index(axis = 0,ascending=True) # 按索引排序,降序
df.sort_index(axis = 1,ascending=False) #按列名排序,升序
# 2、属性值排序
df.sort_values(by = ['Python']) #按Python属性值排序
df.sort_values(by = ['Python','Keras'])#先按Python,再按Keras排序

# 3、返回属性n⼤或者n⼩的值
df.nlargest(10,columns='Keras') # 根据属性Keras排序,返回最⼤10个数据
df.nsmallest(5,columns='Python') # 根据属性Python排序,返回最⼩5个数据

12. 分箱操作

分箱操作就是将连续数据转换为分类对应物的过程。⽐如将连续的身⾼数据划分为:矮中⾼。

分箱操作分为等距分箱和等频分箱。

分箱操作也叫⾯元划分或者离散化。

df = pd.DataFrame(data = np.random.randint(0,150,size = (100,3)),
	columns=['Python','Tensorflow','Keras'])

# 1、等宽分箱
pd.cut(df.Python,bins = 3)
# 指定宽度分箱
pd.cut(df.Keras,#分箱数据
	bins = [0,60,90,120,150],#分箱断点
	right = False,# 左闭右开
	labels=['不及格','中等','良好','优秀'])# 分箱后分类

# 2、等频分箱
pd.qcut(df.Python,q = 4,# 4等分
	labels=['差','中','良','优']) # 分箱后分类

13. 分组聚合

在这里插入图片描述

13.1 分组

# 准备数据
df = pd.DataFrame(data = {'sex':np.random.randint(0,2,size = 300), # 0男,1⼥
	'class':np.random.randint(1,9,size = 300),#1~8⼋个班
	'Python':np.random.randint(0,151,size = 300),#Python
	成绩
	'Keras':np.random.randint(0,151,size =300),#Keras成绩
	'Tensorflow':np.random.randint(0,151,size=300),
	'Java':np.random.randint(0,151,size = 300),
	'C++':np.random.randint(0,151,size = 300)})
df['sex'] = df['sex'].map({0:'男',1:'⼥'}) # 将0,1映射成男⼥

# 1、分组->可迭代对象
# 1.1 先分组再获取数据
g = df.groupby(by = 'sex')[['Python','Java']] # 单分组
for name,data in g:
	print('组名:',name)
	print('数据:',data)
df.groupby(by = ['class','sex'])[['Python']] # 多分组

# 1.2 对⼀列值进⾏分组
df['Python'].groupby(df['class']) # 单分组
df['Keras'].groupby([df['class'],df['sex']]) # 多分组

# 1.3 按数据类型分组
df.groupby(df.dtypes,axis = 1)

# 1.4 通过字典进⾏分组
m =
{'sex':'category','class':'category','Python':'IT','Keras':'IT','Tensorflow':'I
T','Java':'IT','C++':'IT'}
for name,data in df.groupby(m,axis = 1):
	print('组名',name)
	print('数据',data)

13.2 分组聚合

# 2、分组直接调⽤函数进⾏聚合
# 按照性别分组,其他列均值聚合
df.groupby(by = 'sex').mean().round(1) # 保留1位⼩数
# 按照班级和性别进⾏分组,Python、Keras的最⼤值聚合
df.groupby(by = ['class','sex'])[['Python','Keras']].max()
# 按照班级和性别进⾏分组,计数聚合。统计每个班,男⼥⼈数
df.groupby(by = ['class','sex']).size()
# 基本描述性统计聚合
df.groupby(by = ['class','sex']).describe()

13.3 分组聚合apply、transform

在这里插入图片描述
在这里插入图片描述

# 3、分组后调⽤apply,transform封装单⼀函数计算
# 返回分组结果
df.groupby(by = ['class','sex'])[['Python','Keras']].apply(np.mean).round(1)
def normalization(x):
	return (x - x.min())/(x.max() - x.min()) # 最⼤值最⼩值归⼀化
# 返回全数据,返回DataFrame.shape和原DataFrame.shape⼀样。
df.groupby(by = ['class','sex'])
[['Python','Tensorflow']].transform(normalization).round(3)

13.4 分组聚合agg

在这里插入图片描述

# 4、agg 多中统计汇总操作
# 分组后调⽤agg应⽤多种统计汇总
df.groupby(by = ['class','sex'])
[['Tensorflow','Keras']].agg([np.max,np.min,pd.Series.count])
# 分组后不同属性应⽤多种不同统计汇总
df.groupby(by = ['class','sex'])[['Python','Keras']].agg({'Python':[('最⼤值',np.max),('最⼩值',np.min)],
	'Keras':[('计数',pd.Series.count),('中位数',np.median)]})

13.5 透视表pivot_table

# 5、透视表
# 透视表也是⼀种分组聚合运算
def count(x):
	return len(x)
df.pivot_table(values=['Python','Keras','Tensorflow'],# 要透视分组的值
	index=['class','sex'], # 分组透视指标
	aggfunc={'Python':[('最⼤值',np.max)], # 聚合运算
		'Keras':[('最⼩值',np.min),('中位数',np.median)],
		'Tensorflow':[('最⼩值',np.min),('平均值',np.mean),('计数',count)]})

14. 时间序列

14.1 时间戳操作

# 1、创建⽅法
pd.Timestamp('2020-8-24 12')# 时刻数据
pd.Period('2020-8-24',freq = 'M') # 时期数据
index = pd.date_range('2020.08.24',periods=5,freq = 'M') # 批量时刻数据
pd.period_range('2020.08.24',periods=5,freq='M') # 批量时期数据
ts = pd.Series(np.random.randint(0,10,size = 5),index = index) # 时间戳索引Series

# 2、转换⽅法
pd.to_datetime(['2020.08.24','2020-08-24','24/08/2020','2020/8/24'])
pd.to_datetime([1598582232],unit='s')
dt = pd.to_datetime([1598582420401],unit = 'ms') # 世界标准时间
dt + pd.DateOffset(hours = 8) # 东⼋区时间
dt + pd.DateOffset(days = 100) # 100天后⽇期

14.2 时间戳索引

index = pd.date_range("2020-8-24", periods=200, freq="D")
ts = pd.Series(range(len(index)), index=index)
# str类型索引
ts['2020-08-30'] # ⽇期访问数据
ts['2020-08-24':'2020-09-3'] # ⽇期切⽚
ts['2020-08'] # 传⼊年⽉
ts['2020'] # 传⼊年
# 时间戳索引
ts[pd.Timestamp('2020-08-30')]
ts[pd.Timestamp('2020-08-24'):pd.Timestamp('2020-08-30')] # 切⽚
ts[pd.date_range('2020-08-24',periods=10,freq='D')]

# 时间戳索引属性
ts.index.year # 获取年
ts.index.dayofweek # 获取星期⼏
ts.index.weekofyear # ⼀年中第⼏个星期⼏

14.3 时间序列常⽤⽅法

在做时间序列相关的⼯作时,经常要对时间做⼀些移动/滞后、频率转换、采样等相关操作,我们来看下这些操作如何使⽤

index = pd.date_range('8/1/2020', periods=365, freq='D')
ts = pd.Series(np.random.randint(0, 500, len(index)), index=index)

# 1、移动
ts.shift(periods = 2) # 数据后移
ts.shift(periods = -2) # 数据前移
# ⽇期移动
ts.shift(periods = 2,freq = pd.tseries.offsets.Day()) # 天移动
ts.tshift(periods = 1,freq = pd.tseries.offsets.MonthOffset()) #⽉移动

# 2、频率转换
ts.asfreq(pd.tseries.offsets.Week()) # 天变周
ts.asfreq(pd.tseries.offsets.MonthEnd()) # 天变⽉
ts.asfreq(pd.tseries.offsets.Hour(),fill_value = 0) #天变⼩时,⼜少变多,fill_value为填充值

# 3、重采样
# resample 表示根据⽇期维度进⾏数据聚合,可以按照分钟、⼩时、⼯作⽇、周、⽉、年等来作为⽇期维度
ts.resample('2W').sum() # 以2周为单位进⾏汇总
ts.resample('3M').sum().cumsum() # 以季度为单位进⾏汇总

# 4、DataFrame重采样`在这里插入代码片`
d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
	'volume': [50, 60, 40, 100, 50, 100, 40, 50],
	'week_starting':pd.date_range('24/08/2020',
	periods=8,freq='W')})
df1 = pd.DataFrame(d)
df1.resample('M',on = 'week_starting').apply(np.sum)
df1.resample('M',on = 'week_starting').agg({'price':np.mean,'volume':np.sum})

days = pd.date_range('1/8/2020', periods=4, freq='D')
data2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
	'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
df2 = pd.DataFrame(data2,
	index=pd.MultiIndex.from_product([days,['morning','afternoon']]))
df2.resample('D', level=0).sum()

14.4 时区表示(⾮重点)

# 此部分内容⾃学即可
index = pd.date_range('8/1/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(index)), index)

import pytz
pytz.common_timezones # 常⽤时区
# 时区表示
ts = ts.tz_localize(tz='UTC')
# 转换成其它时区
ts.tz_convert(tz = 'Asia/Shanghai')

15. 数据可视化

使用matplotlib

16. 实战-拉勾网数据分析师招聘数据分析

16.1 分析⽬标

  • 各城市对数据分析岗位的需求情况
  • 不同细分领域对数据分析岗的需求情况
  • 数据分析岗位的薪资状况
  • ⼯作经验与薪⽔的关系
  • 公司都要求什么掌握什么技能
  • 岗位的学历要求⾼吗
  • 不同规模的企业对⼯资经验的要求以及提供的薪资⽔平

16.2 数据加载

import pandas as pd
import numpy as np
job = pd.read_csv('./lagou2020.csv')
job.drop_duplicates(inplace = True) # 删除重复数据

16.3 数据清洗

  1. 过滤⾮数据分析的岗位
# 数据分析相应的岗位数量
cond = job["positionName"].str.contains("数据分析") # 职位名中含有数据分析字眼的
# 筛选出我们想要的字段,并剔除positionName
job = job[cond]
job.reset_index(inplace=True) # ⾏索引 重置
  1. 拉勾⽹爬取下来的薪⽔是⼀个区间,这⾥⽤薪⽔区间的均值作为相应职位的薪⽔
# 处理过程
#1、将salary中的字符串均⼩写化(因为存在8k-16k和8K-16K)
#2、运⽤正则表达式提取出薪资区间
#3、将提取出来的数字转化为int型
#4、取区间的平均值
job["salary"] = job["salary"].str.lower()\
.str.extract(r'(\d+)[k]-(\d+)k')\
.applymap(lambda x:int(x))\
.mean(axis=1)
  1. 从job_detail中提取出技能要求 将技能分为以下⼏类
    Python
    SQL
    Tableau
    Excel
    SPSS/SAS
    处理⽅式: 如果job_detail中含有上述五类,则赋值为1,不含有则为0
job["job_detail"] = job["job_detail"].str.lower().fillna("") #将字符串⼩写化,并将缺失值赋值为空字符串
job["Python"] = job["job_detail"].map(lambda x:1 if ('python' in x) else 0)
job["SQL"] = job["job_detail"].map(lambda x:1 if ('sql' in x) or ('hive' in x) else 0)
job["Tableau"] = job["job_detail"].map(lambda x:1 if 'tableau' in x else 0)
job["Excel"] = job["job_detail"].map(lambda x:1 if 'excel' in x else 0)
job['SPSS/SAS'] = job['job_detail'].map(lambda x:1 if ('spss' in x) or ('sas' in x) else 0)
  1. 处理⾏业信息
    在⾏业信息中有多个标签,对其进⾏处理,筛选最显著的⾏业标签。
def clean_industry(industry):
	industry = industry.split(",")
	if industry[0]=="移动互联⽹" and len(industry)>1:
		return industry[1]
	else:
		return industry[0]
job["industryField"] = job.industryField.map(clean_industry)
  1. 使⽤matplotlib进⾏数据可视化分析。

17. pandas库的亮点

  • ⼀个快速、⾼效的DataFrame对象,⽤于数据操作和综合索引;
  • ⽤于在内存数据结构和不同格式之间读写数据的⼯具:CSV和⽂本⽂件、Microsoft Excel、SQL数据库和快速HDF 5格式;
  • 智能数据对⻬和丢失数据的综合处理:在计算中获得基于标签的⾃动对⻬,并轻松地将凌乱的数据操作为有序的形式;
  • 数据集的灵活调整和旋转;
  • 基于智能标签的切⽚、花式索引和⼤型数据集的⼦集;
  • 可以从数据结构中插⼊和删除列,以实现⼤⼩可变;
  • 通过在强⼤的引擎中聚合或转换数据,允许对数据集进⾏拆分应⽤组合操作;
  • 数据集的⾼性能合并和连接;
  • 层次轴索引提供了在低维数据结构中处理⾼维数据的直观⽅法;
  • 时间序列-功能:⽇期范围⽣成和频率转换、移动窗⼝统计、移动窗⼝线性回归、⽇期转换和滞后。甚⾄在不丢失数据的情况下创建特定领域的时间偏移和加⼊时间序列;
  • 对性能进⾏了⾼度优化,⽤Cython或C编写了关键代码路径。
  • Python与pandas在⼴泛的学术和商业领域中使⽤,包括⾦融,神经科学,经济学,统计学,⼴告,⽹络分析,等等
  • 学到这⾥,体会⼀会pandas库的亮点,如果对哪些还不熟悉,请对之前知识点再次进⾏复习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值