基于图正则化稀疏判别分析的人脸识别
摘要
流形学习和稀疏表示的分类技术是人脸识别的两种流行的技术。因为流形学习能用低维表示高维数据,广泛应用于计算机视觉和模式识别。大多数流形学习算法可以嵌入框架,第一步是确定相邻图。传统的方法是采用k近邻或k-球模型。然而,它们是参数化的并且对噪声敏感。此外,很难确定适当邻域的大小。为了解决这些问题,在本文中提出了正则化稀疏图判别分析,grsda等方法。基于图嵌入和保稀疏投影的内禀权矩阵。通过稀疏表示得到惩罚图。grsda寻求子空间的类内样本尽可能紧凑,而类间的样本可能是可分离的。具体fi卡利,在低维空间中的样本可以保留稀疏的地方的关系在同一类中,同时提高不同类样本的可分性。因此,grsda可以获得更好的性能。大量的实验在ORL,耶鲁-B和AR人脸数据库上进行,结果表明本文提出的算法优于fiLPP,UDP,SPP和dsnpe。
1.介绍
人脸识别作为模式识别的一个流行的应用—在研究领域中计算机视觉技术引起了人们极大的兴趣。人脸识别的主要步骤包括预处理,特征提取和分类。为了使后面的任务轻松一些,已经对预处理提出了许多算法,并且还有一份关于人脸识别的报告。人脸识别的分类是从简单的最近邻(NN)[ 4 ]发展而来,最近提出的基于回归的分类算法的方法,一些如线性回归分类fiER(LRC)[ 5 ],SRC[6]和CRC[7]。这三种基于回归的算法均取得了类似的结果,他们在实际应用中均表现出了巨大的潜力。此外,在[ 8-10 ]也提出了许多上述分类算法。除了这些,支持向量机(SVM)[ 11 ]和深度学习[12,13]在人脸识别中也很常用。例如,当深度学习应用于人脸识别时,一种叫做DeepFace [ 12 ]的算法在标记的数据集中能取得较好的结果。
在所有的人脸识别算法中,基于外观的子空间学习方法因其简单和理想的性能引起了极大的关注。因为人脸图像的维度通常很高,降维也称做特征提取,是人脸识别中的关键问题。在过去的20年中受到了极大的关注。计算机视觉和模式识别中的许多应用如人脸识别、基于内容的图像检索、生物信息学等经常面临采取的样品为高维和非线性。然而,本文给出了一个有效降维的方法[14]。在过去的几十年中已经提出很多算法,其中有两个广泛使用的是主成分分析(PCA)[ 15 ]和线性判别分析(LDA)[16,17],这两者均有矩阵—分解为基础的方法[ 18 ],并假设DIS—样品是全局线性分布。然而,在许多应用中例如考虑高维数据的人脸图像,样品的分布通常是非线性的。可以通过使用内核技巧来处理这个问题,将之前空间的原始数据映射到一个更高的维度空间。在内核空间数据被假定为线性可分的。内核空间的数据被假定为线性可分的。核主成分分析(KPCA)[ 19 ]和核线性鉴别分析(KLDA)[ 20 ]在模式识别中代表有效性。然而,如何选择合适的内核是最关键的问题,因为它经常影响算法。
另一类是流形学习算法(例如,Isomap [ 21 ],局部线性嵌入(LLE)[ 22 ],Laplacian嵌入(LE)[ 23 ],局部切空间排列(LTSA)[ 24 ],平行向量场嵌入(PFE)[ 25 ],测地距离函数学习(GDL)[ 26 ],并现场校准跨媒体检索(施肥)[ 27 ]),已提出发现内在的低维可以表示高维和非线性数据。然而,这类算法不能匹配一种新的样品到相应的低维量纲空间,也称为样本推广问题[ 28 ]。因此针对这个问题提出了很多方法,可以实现显式映射,如局部保持投影(LPP)[ 29,30 ],邻居保持嵌入(NPE)[ 31 ],无病鉴别投影(UDP)[ 32 ],边际Fisher分析(MFA)[ 33 ],线性判别嵌入(LDE)[ 34 ],正交LPP[ 35 ],局部保持判别投影(LPDP)[ 36 ],判别式多流形分析[ 37 ]和基于特征线距离的迭代子空间分析[ 38 ]。这些算法用一种或另外一种方式考虑了流形结构或判别信息,并表现出比传统方法在一些特殊的场景中更加高效。例如,在[ 37 ]中已经定义了流形图和内管图,再根据标签信息选取了最优投影,取得了良好的结果。并且每个人都只有一个样品。
所有这些方法都可以在图形嵌入框架[39,40]。在这个框架的第一步是建立图,即内图和罚图。然而,这个算法的性能在很大程度上取决于如何构造图。传统方案采用k邻接点法或者ε球球法,但如何选择合适的方法以及邻域大小或球半径仍不清楚。再者对于这两种方法,图的构造和权重分配是独立的。目前还没有一个理想的模型,而且还不能一步完成图结构、权重分配等问题[41]。
最近几年稀疏表示[ 6,42 ]引起了广泛关注。主要方法是给定的测试样本可以表示为训练的线性组合。样本和分类通过评估来实现,该评估会导致最小重建偏差。稀疏表示得到的系数能够建立样本和重建测试样本。据报道[ 43 ]称这些具有大系数的样品可能属于同一类。因此,重建系数可以作为测量类的一种方式。
出于以上考虑,一些研究人员试图用非参数方法构造相邻图,其中图的构建和权重分配可以一步就完成,并且这一技术已被广泛应用。因为应用程序无参数和健壮。颜等人[44,45]提出L1图进行图像分析,并用稀疏矩阵表示构造图。在[ 46 ]图中提出了正则化稀疏编码方法。局部流形结构在稀疏表示中的应用,然而该法性能欠佳。与L1图相似,乔等人[ 47 ]提出稀疏性—服务投影(SPP),其中每一个样本都呈现为剩余样本的线性组合。
SPP试图找到一种能够保持稀疏重构关系的工程。不需要选择邻域参数、尺寸,作者指出它具有天然的辨别力。在一定程度上对噪声具有鲁棒性。然而,SPP作为整个训练集的字典,这是一种非监督类的方法。张等人[ 48 ]介绍了对图的优化稀疏约束降维方法(godrsc),该法试图采纳的稀疏表示系数和嵌入。在[ 49 ]稀疏表示分类转向判别投影(SRC—DP)中,试图和投影的最大化类间重建误差最小化。因此它更优一点。但它忽略了由于投影矩阵和稀疏系统而使得流形结构和时间开销较大。陈和靳[ 50 ]从线性的角度提出了一种新的特征提取方法,称为侦察—结构判别分析(RDA)。桂等人[ 51 ]设计了一个新方案称为判别稀疏邻域保持嵌入(dsnpe),代表数据的一个线性组合,来自同一类的样本并保留了稀疏在同一类的性关系。然而,它忽略了训练样本固有的流形结构,特别是类间流形结构,因为它只集成SPP和max—最佳边缘准则(MMC)[ 52 ]。类似的作品也可以在53,54 [发现]。
利用流形学习的优点和鲁棒性稀疏表示,本文提出了一种新的算法叫做正则化稀疏判别分析(grsda),这利用稀疏表示作为图形构造的一种权重分配的方法。在GRSDA中,内在和惩罚图通过稀疏矩阵表示构造,随后可获得权重,因此避免了确定邻域大小的困难。一方面,它继承了流形结构像LPP;另一方面,它来自判别能力强的LDA。在图形嵌入式框架下,grsda寻求一个同一类的样本尽可能地紧凑的空间,来自不同类的样本尽可能地可分离。
本文的其余部分安排如下:第2节介绍了相关的作品像稀疏表示的概述,保稀疏投影与图嵌入。在第三章提出了图形稀疏判别分析。算法及相关实验结果见第4节。第5节给出结论。
2.相关工作
假设有一个n个样本的训练集,其中D表示维数。共有C个类,在第k类中有n k 个样本(=1, 2)。降维是为了寻找一个投影,使得在原有空间里能够和低维空间相互匹配。
2.1.稀疏表示
如果给定的测试样本Y属于第i类,稀疏表示假设Y可以表示为第i类训练样本的线性组合。换句话说,我们可以如下所示:如果一个给定的测试样本Y属于第i类,稀疏表示假设Y可以表示为一个第i类的线性组合。换句话说,我们可以表示为如下所示:
其中表示y在上的表示系数。理想的情况是。如果把Xi, 1, 2, , i C 放到整个训练集中,那么y可以表示成整个训练集的线性组合, 因此可以得到代表系数矩阵。换句话说也就是:
上述模型可以表示如下:
在是的范数,这表示向量W的非零项的数目。
上述优化问题在多项式中不能解决,因为L0范数的优化问题是一个NP问题。幸运的是,最近已经做了很多关于压缩传感[ 55 ]的工作并且表明如果足够稀疏的话那么L0范数等价于L1范数的优化问题。均可以通过下面的优化问题来解决,即:
在获得最优稀疏表示后,可以计算出测试样本和第i类样本之间的重建误差。
然后标签Y被确定为最小重建误差的类:
2.2.稀疏保留投影
稀疏保留投影的目的是保存稀疏重构关系,其目标函数是:
其中A是转换矩阵,而I是一个确定的矩阵。此外,是X轴上的稀疏重建系数,它可以通过以下优化问题得到。