为什么要学数据分析
有读者问我,看到现在大厂都在招数据分析师,薪资也非常有吸引力,我会用 SQL 和 Excel,还会一点 Python,能不能去应聘?
先说结论:如果你仅仅是会操作工具提取数据,那你离合格的数据分析师还差的很远。
原因是:数据分析有一套标准的工作流程,不是仅仅提数这么简单,更重要的是分析和建议。
一个专业的数据分析师在对业务做数据分析时,流程一般为:
定义问题
搭建框架
数据提取
数据清洗
数据分析
数据可视化
总结建议
如果没有遵循这样的流程,那得出的报告,往往只能得出结论,顶多定位到问题——
这样没有分析结果、指导方案的报告,与其说是数据分析,倒不如说是数据展示而已。
但这些结论业务方可能早就知道了,他们更想知道怎么办,怎么解决。
因此,定义问题、分析数据及总结建议,才是数据分析师的核心价值所在,也是无数数据分析师仍在持续学习的原因。
如果你还仅仅停留在工具操作者的层面,每天机械的跑数,一定要重视起数据分析能力的提升,否则,很容易被同样精通工具的新人所取代。
2
谈一谈学习方式
说到学习,大部分人也存在相同的误区,即认为掌握了 SQL、Excel、Python 三大件,就所向披靡了。
下图是数据分析流程中所需要的能力及工具,可以看到,SQL 和 Excel 只能完成数据提取和数据清洗,现在大热的 Python,也仅能做到数据清洗和可视化。
而一个合格的数据分析报告,一定要包括这几点要素——是什么问题,是谁的问题,是多大的问题,以及最重要的建议:要怎么做?
这就要求数据分析师不光会使用工具,更能掌握业务理解能力、数据方法论等。
而这些能力,无不需要通过大量的实战演练,需要丰富的落地场景和案例去习得。
目前大家主流的学习方式主要有这几种:B站撸视频,买书自学,以及学习课程。
1. 先说撸视频这种方式。
许多想学数据分析的人收藏夹里都有数百个的视频,但大部分可能都是“马了就是做了”,真正打开的没有几个。
而且,视频来源良莠不齐,其中大部分仍进局限于数据分析工具的操作演示,以及用非常简单的案例(如期末考试成绩、男女员工比例等低级场景)去讲数据,和真实情形相差甚远,用一个图简单表示的话大概是这样。
这样,一到工作中,依旧没办法解决问题,因为根本没有基于真实场景,所以真实案例非常重要。
2. 再说下自学的方式。
不能否认有的人自学能力很强,但不是每个人都这么强。人是有惰性的,在没有压力、没人监督的情况下,学习效果非常难以保证。
而且和看视频一样,自学往往依旧偏重于工具、理论的学习,无法结合真实场景,容易出现纸上谈兵的现象,不推荐用这种方式。
3. 最后谈一下培训课程。
很多人把课程妖魔化,觉得只要是培训就是浪费钱,其实大可不必。
要是听课没用,那大大小小的学校就没有存在的必要了,有人引领,可以少走很多弯路,通过科学的教学手段,也能获得更好的效果,更高效便捷。
培训课程的优势是可以系统的学习各个数据分析技能,并结合一定的案例。但市场上常见的培训课程一般都存在以下几种问题:
内容缺乏质量和深度,浮于理论,没有落地场景;
更倾向于 Python 或某一种工具,不能全面构建数据分析技术体系;
空谈算法,没有业务案例,无法覆盖产品、运营等实用场景;
········
这种“学习”自然无法保证效果,即便学完,也不能帮你就业,浪费了大量的时间和金钱。
学习要付出大量的时间和精力,没有人想做无用功。所以,选择一个靠谱的课程,就显得尤为重要。
卫心:web6466