LeetCode 1074. 元素和为目标值的子矩阵数量

138 篇文章 0 订阅
135 篇文章 0 订阅
这篇博客讨论了一种算法,通过构造二维前缀和和使用哈希表来高效解决寻找和为目标值的子矩阵数量的问题。作者指出,对于区间查询,暴力搜索是不可行的,而应该利用哈希表配合前缀和记录。文章提供了相应的代码实现,并通过遍历矩阵的上、下边界来更新哈希表,从而快速查找满足条件的子矩阵。
摘要由CSDN通过智能技术生成

基本思想:

和之前一道题思路很想,构造二维前缀和,之后固定上下边界,从左至右进行区间计算;

可以把问题转化为:“560. 和为K的子数组“,来进行计算;

这里可以用hash+前缀求解,但是自己当时忘了;

求区间问题爆搜不可取,还是hash+前缀记录吧;

基本代码:

class Solution {
public:
    int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
        int m=matrix.size();
        int n=matrix[0].size();
        int ret=0;
        //unordered_map<int, vector<int>>ump;
        vector<vector<int>>dp(m+1,vector<int>(n+1,0));
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+matrix[i-1][j-1];
                //int index=(i-1)*n+j;
                //ump[dp[i][j]].push_back(index);
            }
        }
        for(int top=0;top<=m;top++){
            for(int bot=top+1;bot<=m;bot++){
                unordered_map<int, int>ump;
                ump[0]=1;
                int pre=0;
                for(int i=1;i<=n;i++){
                    int remain=dp[bot][i]-dp[top][i];
                    if(ump.count(remain-target)){
                        ret+=ump[remain-target];
                    }
                    ump[remain]++;
                }
            }
        }
        return ret;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值