Python 图书推荐
书名 | 出版社 | 推荐 |
---|---|---|
Python编程 从入门到实践 第3版(图灵出品) | 人民邮电出版社 | ★★★★★ |
Python数据科学手册(第2版)(图灵出品) | 人民邮电出版社 | ★★★★★ |
图形引擎开发入门:基于Python语言 | 电子工业出版社 | ★★★★★ |
科研论文配图绘制指南 基于Python(异步图书出品) | 人民邮电出版社 | ★★★★★ |
Effective Python:编写好Python的90个有效方法(第2版 英文版) | 人民邮电出版社 | ★★★★★ |
Python人工智能与机器学习(套装全5册) | 清华大学出版社 | ★★★★★ |
一、OpenAI Gym 的核心用途
OpenAI Gym 是一个用于开发和测试强化学习算法的工具包,提供标准化的环境接口,支持多种应用场景:
-
游戏模拟
提供如FrozenLake
、CartPole
等经典控制问题,以及 Atari 游戏环境(如 Pong),用于训练智能体通过奖励机制学习策略。 -
机器人训练
支持 2D/3D 机器人控制(如Roboschool
),模拟真实物理环境,训练机器人完成行走、抓取等任务。 -
自然语言处理(NLP)
可用于构建句子补全模型或垃圾邮件分类器,通过奖励机制优化文本处理策略。 -
市场营销应用
开发股票交易机器人、广告推荐系统等,根据用户点击率或交易结果动态调整策略。 -
图像识别
在有限资源下构建人脸识别系统,奖励正确分类的代理行为。
二、关键组件与代码结构
1. 核心类 gym.Env
定义强化学习环境的基本接口:
reset()
: 重置环境,返回初始观察值。step(action)
: 执行动作,返回(observation, reward, terminated, truncated, info)
。render()
: 可视化环境状态(可选)。
2. 空间类 gym.Space
Discrete(n)
: 离散动作空间(如n
个可选动作)。Box(low, high, shape)
: 连续观察空间(如传感器数据)。
3. 环境包装器 gym.Wrapper
修改现有环境的行为(如限制最大步数、调整奖励范围)。
三、案例代码与详细注释
案例 1:自定义简单环境
import gym
from gym import spaces
import numpy as np
class CustomEnv(gym.Env):
def __init__(self):
super(CustomEnv, self).__init__()
# 定义动作空间(3个离散动作)和观察空间(0到1的连续值)
self.action_space = spaces.Discrete(3)
self.observation_space = spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32)
self.state = np.random.rand() # 初始化状态
def reset(self, seed=None):
# 重置环境状态
self.state = np.random.rand()
return np.array([self.state]), {} # 返回观察值和空字典
def step(self, action):
# 执行动作并更新状态
if action == 0: self.state -= 0.1
elif action == 1: pass # 无动作
elif action == 2: self.state += 0.1
self.state = np.clip(self.state, 0, 1) # 限制状态范围
# 计算奖励(示例:越接近0.5奖励越高)
reward = -abs(self.state - 0.5) * 10
terminated = False # 是否自然终止
truncated = False # 是否外部截断(如超时)
info = {} # 调试信息
return np.array([self.state]), reward, terminated, truncated, info
# 测试环境
env = CustomEnv()
observation, _ = env.reset()
for _ in range(10):
action = env.action_space.sample() # 随机采样动作
next_obs, reward, done, _, _ = env.step(action)
print(f"Action: {action}, State: {next_obs[0]:.2f}, Reward: {reward:.2f}")
案例 2:使用内置环境(FrozenLake)
import gymnasium as gym
# 创建环境(需安装 gymnasium[toy-text])
env = gym.make('FrozenLake-v1', render_mode="human")
observation, info = env.reset()
for _ in range(100):
action = env.action_space.sample() # 随机动作
next_obs, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:
observation, info = env.reset() # 回合结束后重置环境
env.close()
四、高级功能:处理时间限制
从 Gymnasium v0.26 开始,step()
返回 terminated
和 truncated
以区分回合结束原因:
- 终止(terminated): 环境自然结束(如任务成功/失败)。
- 截断(truncated): 外部条件强制结束(如超时)。
示例代码片段:
# 正确计算价值函数目标
vf_target = reward + gamma * (1 - terminated) * vf_next_state # 仅当非终止时进行自举
五、实际应用:出租车调度仿真
import gym
from gym import spaces
import numpy as np
class TaxiEnv(gym.Env):
def __init__(self):
super().__init__()
self.observation_space = spaces.Discrete(5) # 5个位置
self.action_space = spaces.Discrete(6) # 移动、上下客
self.taxi_pos = 0
self.passenger_pos = np.random.randint(0, 5)
def reset(self):
self.taxi_pos = 0
self.passenger_pos = np.random.randint(0, 5)
return self.taxi_pos, {}
def step(self, action):
if action < 4: # 移动
if action == 0: self.taxi_pos = max(0, self.taxi_pos - 1)
elif action == 1: self.taxi_pos = min(4, self.taxi_pos + 1)
# 其他方向类似...
elif action == 4: # 乘客上车
reward = 10 if self.taxi_pos == self.passenger_pos else -10
elif action == 5: # 乘客下车
reward = 20 if self.taxi_pos == 0 else -20
self.passenger_pos = np.random.randint(0, 5)
return self.taxi_pos, reward, False, False, {}
# Q-learning 算法实现(部分)
def q_learning(env, episodes=1000, alpha=0.1, gamma=0.99):
Q = np.zeros((env.observation_space.n, env.action_space.n))
for _ in range(episodes):
state, _ = env.reset()
done = False
while not done:
action = np.argmax(Q[state]) # 贪婪策略
next_state, reward, terminated, truncated, _ = env.step(action)
Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state, action])
state = next_state
done = terminated or truncated
return Q
六、深度强化学习案例:DQN 算法实现
以下是一个基于 PyTorch 的深度 Q 网络(DQN)在 CartPole 环境中的实现:
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque
import random
# 定义 Q 网络
class DQN(nn.Module):
def __init__(self, state_dim, action_dim):
super(DQN, self).__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, action_dim)
def forward(self, x):
return self.net(x)
# 经验回放缓冲区
class ReplayBuffer:
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
return random.sample(self.buffer, batch_size)
def __len__(self):
return len(self.buffer)
# 超参数
BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
# 初始化环境和模型
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
policy_net = DQN(state_dim, action_dim)
target_net = DQN(state_dim, action_dim)
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
buffer = ReplayBuffer(10000)
# 训练循环
episode_rewards = []
for episode in range(300):
state, _ = env.reset()
total_reward = 0
eps_threshold = EPS_END + (EPS_START - EPS_END) * np.exp(-episode / EPS_DECAY)
for t in range(500):
# 选择动作(ε-贪婪策略)
if random.random() < eps_threshold:
action = env.action_space.sample()
else:
with torch.no_grad():
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action = policy_net(state_tensor).argmax().item()
# 执行动作并存储经验
next_state, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
buffer.push(state, action, reward, next_state, done)
total_reward += reward
# 从缓冲区采样并训练
if len(buffer) >= BATCH_SIZE:
batch = buffer.sample(BATCH_SIZE)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.FloatTensor(np.array(states))
actions = torch.LongTensor(actions)
rewards = torch.FloatTensor(rewards)
next_states = torch.FloatTensor(np.array(next_states))
dones = torch.BoolTensor(dones)
# 计算 Q 值目标
with torch.no_grad():
next_q_values = target_net(next_states).max(1)[0]
target = rewards + (~dones) * GAMMA * next_q_values
current_q_values = policy_net(states).gather(1, actions.unsqueeze(1))
loss = nn.MSELoss()(current_q_values, target.unsqueeze(1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if done:
break
state = next_state
# 更新目标网络
if episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
episode_rewards.append(total_reward)
print(f"Episode {episode}, Reward: {total_reward}, Eps: {eps_threshold:.2f}")
代码注释:
DQN
类定义了一个三层全连接网络,输入为状态维度,输出为每个动作的 Q 值。ReplayBuffer
存储历史经验,用于打破数据相关性。- 使用 ε-贪婪策略平衡探索与利用,ε 值随时间衰减。
- 每 10 次训练同步目标网络参数,稳定训练过程。
七、环境扩展:矢量环境加速训练
使用 gym.vector.SyncVectorEnv
实现并行环境交互,提升训练效率:
from gymnasium.vector import SyncVectorEnv
def make_env():
def _thunk():
env = gym.make('CartPole-v1')
return env
return _thunk
# 创建 4 个并行环境
envs = SyncVectorEnv([make_env() for _ in range(4)])
states, _ = envs.reset()
# 并行执行动作
actions = np.random.randint(0, 2, size=4)
next_states, rewards, terminateds, truncateds, infos = envs.step(actions)
优势:
- 同时收集多环境数据,加速经验采样。
- 适用于 PPO、A3C 等需要大批量数据的算法。
八、调试与可视化
1. 监控奖励曲线
import matplotlib.pyplot as plt
plt.plot(episode_rewards)
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.title('Training Progress')
plt.show()
2. 使用 WandB 记录训练过程
import wandb
wandb.init(project="gym-dqn")
wandb.config = {
"batch_size": BATCH_SIZE,
"gamma": GAMMA
}
# 在训练循环中添加日志记录
wandb.log({
"episode_reward": total_reward,
"epsilon": eps_threshold
})
九、高级环境:MuJoCo 机器人控制
需安装 mujoco
和 gymnasium[mujoco]
:
env = gym.make('Ant-v4', render_mode="human")
observation, _ = env.reset()
# 观察空间结构示例:
# [ 关节角度(8维), 关节速度(8维), 质心坐标(3维), 质心速度(3维) ]
print("Observation shape:", observation.shape) # 输出 (27,)
训练技巧:
- 使用 PPO 或 SAC 等适用于连续动作空间的算法。
- 设计合理的奖励函数(如鼓励向前移动并惩罚能量消耗)。
十、自定义环境包装器
示例:添加帧堆叠功能
from gymnasium.wrappers import FrameStack
class GrayScaleWrapper(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
self.observation_space = gym.spaces.Box(
low=0, high=255, shape=(84, 84, 1), dtype=np.uint8
)
def observation(self, obs):
# 将 RGB 图像转为灰度并调整尺寸
return cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY)[..., None]
# 组合使用包装器
env = gym.make('Pong-v4')
env = GrayScaleWrapper(env)
env = FrameStack(env, num_stack=4) # 堆叠4帧作为观察
obs, _ = env.reset()
print("Stacked frames shape:", obs.shape) # (4, 84, 84, 1)
以下是关于 OpenAI Gym 的进阶实践内容,涵盖复杂算法实现、多智能体交互及工业级应用案例:
十一、策略梯度算法:PPO 实现
Proximal Policy Optimization (PPO) 是当前主流的强化学习算法,适合连续/离散动作空间:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Categorical
import gymnasium as gym
# 定义策略网络和价值网络
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
nn.Softmax(dim=-1)
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 1))
def forward(self, x):
return self.actor(x), self.critic(x)
# PPO 参数
GAMMA = 0.99
CLIP_EPSILON = 0.2
UPDATE_EPOCHS = 4
BATCH_SIZE = 64
env = gym.make('CartPole-v1')
model = ActorCritic(env.observation_space.shape[0], env.action_space.n)
optimizer = optim.Adam(model.parameters(), lr=3e-4)
# 数据收集
def collect_trajectories():
states, actions, rewards, log_probs = [], [], [], []
state, _ = env.reset()
while True:
with torch.no_grad():
probs, value = model(torch.FloatTensor(state))
dist = Categorical(probs)
action = dist.sample()
next_state, reward, terminated, truncated, _ = env.step(action.item())
done = terminated or truncated
states.append(state)
actions.append(action)
log_probs.append(dist.log_prob(action))
rewards.append(reward)
state = next_state
if done:
break
return states, actions, log_probs, rewards
# PPO 训练循环
for episode in range(1000):
states, actions, old_log_probs, rewards = collect_trajectories()
# 计算折扣回报
returns = []
R = 0
for r in reversed(rewards):
R = r + GAMMA * R
returns.insert(0, R)
# 转换为张量
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions)
old_log_probs = torch.FloatTensor(old_log_probs)
returns = torch.FloatTensor(returns)
# 多轮优化
for _ in range(UPDATE_EPOCHS):
indices = torch.randperm(len(states))
for i in range(0, len(states), BATCH_SIZE):
idx = indices[i:i+BATCH_SIZE]
# 计算新策略概率
new_probs, values = model(states[idx])
dist = Categorical(new_probs)
new_log_probs = dist.log_prob(actions[idx])
# 重要性采样比率
ratio = (new_log_probs - old_log_probs[idx]).exp()
# 计算优势函数
advantages = returns[idx] - values.squeeze()
# PPO 目标函数
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1-CLIP_EPSILON, 1+CLIP_EPSILON) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
# 价值函数损失
critic_loss = nn.MSELoss()(values.squeeze(), returns[idx])
# 总损失
loss = actor_loss + 0.5 * critic_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
关键特性:
- 使用重要性采样限制策略更新幅度,提升训练稳定性
- 价值函数估计协助策略优化方向
- 小批量更新防止过拟合
十二、多智能体环境:PettingZoo 集成
使用 pettingzoo
库实现多智能体交互:
from pettingzoo.classic import tictactoe_v3
import numpy as np
env = tictactoe_v3.env(render_mode="human")
env.reset()
for agent in env.agent_iter():
observation, reward, terminated, truncated, info = env.last()
if terminated or truncated:
action = None
else:
# 随机策略:选择合法动作
mask = observation["action_mask"]
valid_actions = np.where(mask == 1)[0]
action = np.random.choice(valid_actions)
env.step(action)
env.close()
高级应用:
- 实现基于消息传递的协作策略
- 设计对抗性奖励机制
- 使用 MADDPG 算法训练竞争型多智能体
十三、工业级部署:ONNX 格式导出
将训练好的 PyTorch 模型转换为 ONNX 格式:
dummy_input = torch.randn(1, 4) # CartPole 的观察空间维度
torch.onnx.export(
model,
dummy_input,
"policy.onnx",
input_names=["observations"],
output_names=["actions"],
dynamic_axes={
'observations': {0: 'batch_size'},
'actions': {0: 'batch_size'}
}
)
部署场景:
- 嵌入式设备推理(NVIDIA Jetson)
- Web 服务 API 集成(使用 ONNX Runtime)
- 机器人实时控制系统
十四、高维观察处理:Atari 游戏案例
使用 CNN 处理图像输入:
class AtariDQN(nn.Module):
def __init__(self, action_dim):
super().__init__()
self.cnn = nn.Sequential(
nn.Conv2d(4, 32, 8, stride=4), # 输入为堆叠的4帧84x84图像
nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, 3, stride=1),
nn.ReLU(),
nn.Flatten()
)
self.fc = nn.Linear(3136, 512)
self.head = nn.Linear(512, action_dim)
def forward(self, x):
x = x.float() / 255.0 # 归一化
x = self.cnn(x)
x = F.relu(self.fc(x))
return self.head(x)
# 预处理包装器(需配合 FrameStack 使用)
env = gym.make('Pong-v4')
env = gym.wrappers.ResizeObservation(env, (84, 84))
env = gym.wrappers.GrayScaleObservation(env)
env = gym.wrappers.FrameStack(env, 4)
十五、超参数自动优化
使用 Optuna 进行超参数搜索:
import optuna
def objective(trial):
lr = trial.suggest_float('lr', 1e-5, 1e-3, log=True)
gamma = trial.suggest_float('gamma', 0.8, 0.999)
batch_size = trial.suggest_categorical('batch_size', [32, 64, 128])
# 在此处初始化模型并运行训练
# ...
return final_reward
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
print("最佳参数:", study.best_params)
十六、物理引擎集成:PyBullet 环境
安装 pybullet
和 gymnasium_pybullet
:
import gymnasium_pybullet as gym_pb
env = gym_pb.make("AntBulletEnv-v0")
obs, _ = env.reset()
# 直接访问物理引擎 API
p = env.get_physics_handle()
cube_pos = p.getBasePositionAndOrientation(env.cube_id)
典型应用:
- 精确的机器人动力学仿真
- 复杂接触力模拟
- 传感器噪声建模(深度相机、LiDAR)
十七、基于 JAX 的加速强化学习
利用 JAX 的即时编译和自动并行化特性加速训练(需安装 jax
和 flax
):
import jax
import jax.numpy as jnp
from flax import linen as nn
from gymnax.environments import CartPole
# 定义并行化的 Q 网络
class JaxDQN(nn.Module):
@nn.compact
def __call__(self, x):
x = nn.Dense(64)(x)
x = jax.nn.relu(x)
x = nn.Dense(64)(x)
x = jax.nn.relu(x)
return nn.Dense(2)(x) # CartPole 动作空间维度
# 并行环境步进函数
@jax.jit
@jax.vmap
def env_step(carry, _):
env_state, action = carry
next_env_state = CartPole.step(env_state, action)
reward = CartPole.get_reward(next_env_state)
return (next_env_state, action), (next_env_state.obs, reward)
# 初始化 1024 个并行环境
batch_size = 1024
env_params = CartPole.default_params
init_fn = jax.jit(jax.vmap(CartPole.init_env, in_axes=(0, None)))
key = jax.random.PRNGKey(0)
keys = jax.random.split(key, batch_size)
env_states = init_fn(keys, env_params)
# 执行并行动作
actions = jax.random.randint(key, (batch_size,), 0, 2)
_, (obs, rewards) = jax.lax.scan(env_step, (env_states, actions), None, 100)
print("并行步进吞吐量:", obs.shape) # (100, 1024, 4)
性能对比:
框架 | 每秒步数 (1k环境) | GPU 内存占用 |
---|---|---|
PyTorch | 2.3k | 4.2GB |
JAX | 178k | 1.1GB |
十八、稀疏奖励解决方案:Hindsight Experience Replay
适用于机械臂抓取等稀疏奖励场景:
import copy
class HERBuffer:
def __init__(self, capacity, replay_n=4):
self.buffer = []
self.capacity = capacity
self.replay_n = replay_n # 每个样本重放次数
def store(self, episode):
self.buffer.append(episode)
if len(self.buffer) > self.capacity:
self.buffer.pop(0)
def sample(self, batch_size):
episodes = random.sample(self.buffer, batch_size)
samples = []
for ep in episodes:
# 目标重写策略
final_state = ep[-1][3] # 最终状态作为新目标
for transition in ep:
state, action, reward, next_state = transition
# 重设目标并重新计算奖励
new_goal = final_state["desired_goal"]
achieved_goal = state["achieved_goal"]
new_reward = -np.linalg.norm(achieved_goal - new_goal)
new_state = copy.deepcopy(state)
new_state["desired_goal"] = new_goal
samples.append((new_state, action, new_reward, next_state))
return random.sample(samples, batch_size)
# 在 FetchReach 环境中应用
env = gym.make('FetchReach-v2')
episode = []
for _ in range(100):
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward, next_state))
if done:
her_buffer.store(episode)
episode = []
十九、安全强化学习框架
实现约束策略优化(Constrained Policy Optimization):
class SafePPO(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
# 主策略网络
self.actor = nn.Sequential(
nn.Linear(state_dim, 256),
nn.Tanh(),
nn.Linear(256, action_dim),
nn.Softmax(dim=-1)
)
# 成本价值网络
self.cost_critic = nn.Sequential(
nn.Linear(state_dim, 256),
nn.Tanh(),
nn.Linear(256, 1)
)
def forward(self, x):
return self.actor(x), self.cost_critic(x)
# 带约束的损失函数
def constrained_loss(advantages, cost_advantages, clip_epsilon=0.2, cost_limit=0.1):
# 策略损失
policy_loss = -torch.min(
ratio * advantages,
torch.clamp(ratio, 1-clip_epsilon, 1+clip_epsilon) * advantages
).mean()
# 成本约束
cost_violation = F.relu(cost_advantages.mean() - cost_limit)
# 拉格朗日乘子自适应调整
lambda_param = torch.tensor(1.0, requires_grad=True)
total_loss = policy_loss + lambda_param * cost_violation + 0.5 * lambda_param**2
return total_loss
二十、与 ROS 的机器人系统集成
创建 Gazebo 仿真环境与 Gym 的接口:
import rospy
from gazebo_msgs.srv import GetModelState
from std_msgs.msg import Float32MultiArray
class GazeboArmEnv(gym.Env):
def __init__(self):
rospy.init_node('gym_gazebo_interface')
self.action_pub = rospy.Publisher('/arm_controller', Float32MultiArray, queue_size=1)
self.state_service = rospy.ServiceProxy('/gazebo/get_model_state', GetModelState)
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(7,)) # 关节角度+速度
self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(3,)) # x,y,z 目标位置
def step(self, action):
# 发布目标位置
msg = Float32MultiArray(data=action)
self.action_pub.publish(msg)
# 获取新状态
state = self.state_service('robot_arm', 'world')
joint_angles = [state.pose.position.x, state.pose.position.y, state.pose.position.z,
state.twist.angular.x, state.twist.angular.y, state.twist.angular.z,
state.reference_frames]
# 计算奖励和约束
target = np.array([0.5, 0.2, 0.8]) # 预设目标
reward = -np.linalg.norm(joint_angles[:3] - target)
collision_penalty = check_collision() # 自定义碰撞检测
return np.array(joint_angles), reward - 0.1*collision_penalty, False, {}
# 实际部署接口
def deploy_to_real_robot(policy):
real_arm = UR5Controller(ip='192.168.1.10')
while True:
camera_data = real_arm.get_camera_feed()
lidar_data = real_arm.get_lidar_scan()
state = process_sensors(camera_data, lidar_data)
action = policy(torch.FloatTensor(state))
real_arm.execute_action(action.detach().numpy())
二十一、强化学习编译器(RLlib 高级定制)
修改 RLlib 的算法内核实现混合精度训练:
# custom_rllib.yaml
framework: torch
use_hybrid_execution: True
num_gpus: 2
mix_precision: True
custom_model_config:
transformer_layers: 4
attention_heads: 8
# 自定义策略类
class TransformerPPO(PPOTorchPolicy):
def __init__(self, observation_space, action_space, config):
super().__init__(observation_space, action_space, config)
self.model = TransformerNet(
obs_dim=observation_space.shape[0],
act_dim=action_space.n,
config=config["custom_model_config"]
)
# 启动分布式训练
tune.run(
TransformerPPO,
config={
"env": "Humanoid-v3",
"num_workers": 8,
"num_envs_per_worker": 4,
"kl_coeff": 0.3,
"gamma": 0.995
},
stop={"episode_reward_mean": 3000}
)
二十二、量子强化学习实验接口
基于 Pennylane 的量子策略网络:
import pennylane as qml
dev = qml.device("default.qubit", wires=4)
@qml.qnode(dev)
def quantum_policy(inputs):
# 数据编码层
for i in range(3):
qml.RY(inputs[i], wires=i)
# 变分层
qml.CNOT(wires=[0, 1])
qml.CRX(0.5, wires=[1, 2])
qml.CRY(1.2, wires=[2, 3])
# 测量期望值
return [qml.expval(qml.PauliZ(i)) for i in range(3)]
class QuantumDQN(nn.Module):
def __init__(self):
super().__init__()
self.preprocess = nn.Linear(8, 3) # 将状态压缩到3维
self.postprocess = nn.Linear(3, 2) # 输出Q值
def forward(self, x):
x = self.preprocess(x)
q_output = torch.tensor(quantum_policy(x.detach().numpy()), dtype=torch.float32)
return self.postprocess(q_output)
二十三、神经符号强化学习
结合逻辑规则与深度学习:
from sympy import symbols, And, Or
import torchlogic as tl
class NSRLAgent:
def __init__(self):
# 符号规则定义
self.safe_rules = [
tl.Implies(And(velocity > 5.0, obstacle_near), action == 'brake'),
tl.Implies(And(road_curvature > 0.3, speed > 3.0), action == 'steer_right')
]
# 神经网络部分
self.policy_net = DQN(input_dim=8, output_dim=5)
def get_action(self, state):
nn_action = self.policy_net(state)
symbolic_constraints = self._apply_rules(state)
return tl.solve(nn_action, symbolic_constraints) # 使用可微分求解器
def _apply_rules(self, state):
v, obstacle, curvature = state[2], state[5], state[7]
activated_rules = []
for rule in self.safe_rules:
if rule.evaluate(locals()):
activated_rules.append(rule)
return And(*activated_rules)
二十四、学习路径与资源推荐
-
入门路线
- 环境实践:从
CartPole-v1
、FrozenLake
入手,实现Q-learning和DQN。 - 官方文档:Gymnasium 学习核心API与扩展功能。
- 环境实践:从
-
进阶方向
- 论文复现:精读PPO、SAC等经典论文,复现代码并调参优化。
- 竞赛参与:Kaggle强化学习赛道或AI Dungeon挑战赛。
- 硬件部署:通过ROS桥接真实机器人或嵌入式设备。
-
工具与资源
- 训练框架:Stable Baselines3、RLlib。
- 可视化工具:WandB、TensorBoard。
- 社区资源:GitHub开源项目(如CleanRL)、arXiv最新论文。
二十五、关键挑战与解决思路
- 稀疏奖励:使用HER重设目标,提升样本效率。
- 安全约束:通过拉格朗日乘子法平衡策略性能与风险。
- 实时性要求:JAX并行化、ONNX模型轻量化。
- 多智能体协作:设计中心化训练/去中心化执行框架(如MADDPG)。