keras实现交叉验证以及K折交叉验证

原文来自https://www.cnblogs.com/bymo/p/9026198.html

记下来,以便以后忘记了可以找到

目录

 


在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法:

  • 使用自动切分的验证集
  • 使用手动切分的验证集

 

回到顶部

一.自动切分

在Keras中,可以从数据集中切分出一部分作为验证集,并且在每次迭代(epoch)时在验证集中评估模型的性能.

具体地,调用model.fit()训练模型时,可通过validation_split参数来指定从数据集中切分出验证集的比例.

# MLP with automatic validation set
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10)

validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。

注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。 

 

回到顶部

二.手动切分

Keras允许在训练模型的时候手动指定验证集.

例如,用sklearn库中的train_test_split()函数将数据集进行切分,然后在kerasmodel.fit()的时候通过validation_data参数指定前面切分出来的验证集.

 

# MLP with manual validation set
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# split into 67% for train and 33% for test
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=150, batch_size=10)

回到顶部

三.K折交叉验证(k-fold cross validation)

将数据集分成k份,每一轮用其中(k-1)份做训练而剩余1份做验证,以这种方式执行k轮,得到k个模型.将k次的性能取平均,作为该算法的整体性能.k一般取值为5或者10.

  • 优点:能比较鲁棒性地评估模型在未知数据上的性能.
  • 缺点:计算复杂度较大.因此,在数据集较大,模型复杂度较高,或者计算资源不是很充沛的情况下,可能不适用,尤其是在训练深度学习模型的时候.

sklearn.model_selection提供了KFold以及RepeatedKFold, LeaveOneOut, LeavePOut, ShuffleSplit, StratifiedKFold, GroupKFold, TimeSeriesSplit等变体.

下面的例子中用的StratifiedKFold采用的是分层抽样,它保证各类别的样本在切割后每一份小数据集中的比例都与原数据集中的比例相同.

# MLP for Pima Indians Dataset with 10-fold cross validation
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import StratifiedKFold
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# define 10-fold cross validation test harness
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
cvscores = []
for train, test in kfold.split(X, Y):
  # create model
    model = Sequential()
    model.add(Dense(12, input_dim=8, activation='relu'))
    model.add(Dense(8, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    # Compile model
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    # Fit the model
    model.fit(X[train], Y[train], epochs=150, batch_size=10, verbose=0)
    # evaluate the model
    scores = model.evaluate(X[test], Y[test], verbose=0)
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
    cvscores.append(scores[1] * 100)
print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores)))

 

[编辑本段]Turbo C2.0    介绍      Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。    基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 [编辑本段]Turbo C 2.0的主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)    Turbo C++ 3.0   “Turbo C++ 3.0”软件是Borland公司在1992年推出的强大的——C语言程序设计与C++面向对象程序设计 的集成开发工具。它只需要修改一个设置选项,就能够在同一个IDE集成开发环境下设计和编译以标准 C 和 C++ 语法设计的程序文件。 [编辑本段]C 语言   C语言起始于1968年发表的CPL语言,它的许多重要思想都来自于Martin Richards在1969年研制的BCPL语言,以及以BCPL语言为基础的与Ken Thompson在1970年研制的B语言。Ken Thompson用B语言写了第一个UNIX操作系统。M.M.Ritchie1972年在B语言的基础上研制了C语言,并用C语言写成了第一个在PDP-11计算机上研制的UNIX操作系统。1977年出现了独立于极其的C语言编译文本《看移植C语言编译程序》,从而大大简化了把C语言编译程序移植到新环境中所做的工作,这本身也就使UNIX的日益广泛使用,C语言也迅速得到推广。   1983年美国国家标准化协会(ANSI)根据C语言问世以来的各种版本,对C语言的发展和扩充制定了新的标准,成为ANSI C。1987年ANSI又公布了新标准————87ANSI C。   目前在微型计算机上使用的有Microsoft C、Quick C、Turbo C等多种版本。这些不同的C语言版本,基本部分是相同的,但是在有关规定上有略有差异。   C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大的功能。许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了,象PC- DOS ,WORDSTAR等就是用这种方法编写的。归纳起来C 语言具有下列特点:   1. C是中级语言   它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工作单元。   2. C是结构式语言   结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清晰, 便于使用、维护以及调试。C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从而使程序完全结构化。   3. C语言功能齐全   C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更高。另外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算功能、逻辑判断功能也比较强大, 可以实现决策目的。   4. C语言适用范围大   C 语言还有一个突出的优点就是适合于多种操作系统, 如DOS、UNIX,也适用于多种机型。   C语言的优点很多,但是也存在一些缺点,如运算优先级太多,运算能力方面不像其它高级语言那样强,语法定义不严格等。但是这些都不能阻止C语言成为一门广受欢迎的计算机编程语言
Turbo C2.0 介绍   Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。 基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)
### 回答1: 在 TURBO C 2.0 中,您可以使用 biosdisk() 函数来格式化软盘。 下面是一段代码示例: ``` #include <stdio.h> #include <dos.h> int main() { // 定义扇区的大小 unsigned int sector_size[3] = {512, 512, 1024}; // 定义填充字节 unsigned char fill_char[3] = {0xF6, 0xF6, 0x48}; // 格式化磁道 700 的前三个扇区 for (int i = 0; i < 3; i++) { int result = biosdisk(2, 0, 70, 0, i + 1, 1, sector_size[i], fill_char[i]); if (result != 0) { printf("格式化扇区 %d 失败,返回码: %d\n", i + 1, result); } } return 0; } ``` 请注意,在使用 biosdisk() 函数之前,需要包含 dos.h 头文件。 希望这能帮到您! ### 回答2使用TURBO C 2.0语言,可以通过以下代码格式化软盘的70磁道0面,并分别格式化3个扇区,大小分别为512字节、512字节和1024字节。其中,前两个扇区使用F6填充,第三个扇区使用48填充。 ```c #include<stdlib.h> #include<stdio.h> #include<dos.h> void formatFloppyDisk(){ union REGS regs; regs.h.ah = 0x0;// To format a floppy disk, we set AH=0 regs.h.dl = 0;// Drive number (0=A, 1=B, etc.) regs.x.cx = 0;// Track number to format regs.h.dh = 0;// Head number regs.h.al = 0;// Sector size (0=default, 1=512 bytes, 2=1024 bytes, 3=2048 bytes etc.) int FILL_BYTE = 0;// The byte value to fill the sectors with during formatting int NUM_SECTORS = 3;// Number of sectors to format // To format 70th track 0th head regs.x.ax = 0x1301; // 0x13 = Reset disk system, 01H = Reset only specified drive int86(0x13, &regs, &regs); // BIOS interrupt to reset disk system for (int i=0; i<NUM_SECTORS; i++){ regs.x.ax = 0x3101; // 0x31 = Write Format, 01H = Format only current track regs.x.bx = 0x0001; // 0x00 = Drive A:, 01H = Head 1, 0 = Generate ID Field depending on the disk in the drive 1 = Keep the ID Field all zeros regs.x.cx = 0x0170; // Track number=70(0-79 range) regs.h.dh = 0x00; // Head number=0 or 1 regs.h.al = 0x02; // Control byte=always zero regs.x.dx = i+1; // Sector number starting from 1 regs.x.si = 0x0000; // segment and offset of read/write buffer regs.x.di = 0x0000; // segment and offset of result if(i == 2){ FILL_BYTE = 0x48; // Fill the third sector with 48 regs.x.ax = 0x3102; // 0x31 = Write Format, 02H = Format sequential tracks immediately following the one being formatted }else{ FILL_BYTE = 0xF6; // Fill the first two sectors with F6 } regs.h.ah = FILL_BYTE; // Fill the sector with specified byte int86(0x13, &regs, &regs); // BIOS interrupt to format the specified sector } } int main(){ formatFloppyDisk(); return 0; } ``` 上述代码使用了INT 0x13,即BIOS中断服务例程,来执行软盘格式化操作。通过设置寄存器的不同参数,可以指定要格式化的磁道、面、扇区大小和填充字节。在这个例子中,我们格式化了软盘70磁道0面的3个扇区,前两个扇区使用F6填充,第三个扇区使用48填充。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值