Python中的并行(多进程)方法比较

近期由于使用遗传算法,计算时间过长,观察CPU运行情况,发现基本上处于一人干活,全家围观的场景,便想着研究一下多进程并行计算,简单总结一下。

【电脑简述】

电脑类型:台式机电脑

操作系统:Windows10

CPU硬件:双路Intel至强处理器、24核48线程、主频2.8Ghz

程序运行环境:Python3.7.2、Jupyter notebook


【错误的并行打开方式】

from multiprocessing.pool import ThreadPool
from scoop import futures
from concurrent.futures import ThreadPoolExecutor
import time

def fib(n):
    if n<= 2:
        return 1
    return fib(n-1) + fib(n-2)

#(一)
begin = time.time()
returnValues=[]
for i in range(36):
    returnValues.append(fib(i))
end = time.time()
print ('a:',end-begin)
#(二)
begin = time.time()
returnValues = list(map(fib, range(36)))
end = time.time()
print ('b:',end-begin)
#(三
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值