- 博客(460)
- 收藏
- 关注
原创 深度学习:PyTorch
PyTorch 因其优雅的设计和灵活性,成为了深度学习研究和开发的重要工具。无论是专业研究人员还是初学者,都可以通过 PyTorch 快速构建并实验不同的深度学习模型。
2025-03-20 18:39:45
93
原创 Open CV:CAMShift 算法
CAMShift 算法最大的特点是可以**自动调整搜索窗口的大小和方向**,从而更好地适应目标大小和形状的变化。CAMShift 算法是 Mean Shift 算法的一个改进版本,它可以自动调整搜索窗口的大小和方向,从而更好地适应目标大小和形状的变化。如果概率分布比较分散,则窗口尺寸会增大。在 Mean Shift 迭代收敛后,CAMShift 算法会根据当前搜索窗口内的概率分布,计算出新的窗口尺寸和方向。4. 计算窗口尺寸和方向: 根据当前搜索窗口内的概率分布,计算出新的窗口尺寸和方向。
2025-03-08 19:35:17
559
原创 Open CV:Mean Shift
基于均值漂移的追踪算法是一种经典的视频追踪算法,它具有简单高效的优点,但也存在一些缺点。通过一些改进方法,可以提高算法的鲁棒性和准确性。
2025-03-08 16:38:21
621
原创 Open CV:视频读取
使用 `cv2.VideoCapture()` 读取视频文件或摄像头。使用 `cap.read()` 读取视频帧。使用 `cv2.VideoWriter()` 创建 VideoWriter 对象。使用 `out.write()` 写入视频帧。使用 `cap.release()` 和 `out.release()` 释放资源。选择合适的 FourCC 编码器。
2025-03-07 23:33:22
937
原创 图像特征:ORB算法
ORB 算法是一种快速、免专利费用的局部特征提取算法,是 SIFT 和 SURF 算法的一个有竞争力的替代方案。它结合了 FAST 角点检测算法和 BRIEF 描述符,并在此基础上进行了改进,使其具有旋转不变性和更好的鲁棒性。ORB 算法在图像匹配、物体识别等领域得到了广泛应用。
2025-03-07 15:41:13
1049
原创 图像特征:FAST算法
FAST 算法是一种非常快速的角点检测算法,适用于实时应用和资源受限的平台。虽然它对噪声敏感,并且不具备方向信息,但其速度优势使其在许多应用中成为一个有吸引力的选择。OpenCV 提供了 FAST 算法的方便实现,可以轻松地在 Python 中使用 FAST 算法。
2025-03-07 15:28:54
451
原创 图像特征:SURF算法
SURF 算法是一种快速且稳健的局部特征提取算法,是 SIFT 算法的有效替代方案。它通过使用积分图像、Hessian 矩阵近似和 Haar 小波响应等技术,大大提高了计算速度。SURF 算法在图像匹配、物体识别等领域得到了广泛应用。请记住,在 OpenCV 中使用 SURF 需要安装 `opencv-contrib-python` 库。
2025-03-06 22:03:51
557
原创 图像特征:SIFT算法
SIFT 是一种强大的局部特征提取算法,具有尺度不变性、旋转不变性等优点,被广泛应用于各种图像处理任务中。虽然计算复杂度较高,但其鲁棒性和独特性使其成为许多应用的首选算法。OpenCV 提供了方便的 SIFT 实现,可以轻松地在 Python 中使用 SIFT 算法。
2025-03-06 20:47:08
607
原创 图像特征:Shi-Tomasi 角点检测算法
Shi-Tomasi 角点检测是一种优秀的角点检测算法,特别适合于需要跟踪特征的应用。它通过计算矩阵 M 的最小特征值来确定角点,并且具有比 Harris 算法更稳定的特性。通过调整 `maxCorners`、`qualityLevel` 和 `minDistance` 等参数,可以控制角点检测的数量和质量。`cv2.goodFeaturesToTrack()` 函数是 OpenCV 中实现 Shi-Tomasi 角点检测的便捷工具。
2025-03-05 22:14:34
1036
原创 图像特征:Harris 角点检测
Harris 角点检测是一种简单而有效的角点检测算法。它基于图像灰度强度的二阶导数来寻找角点,具有旋转不变性和计算效率高的优点。通过调整 `blockSize`、`ksize` 和 `k` 等参数,可以控制角点检测的灵敏度。然而,Harris 角点检测对尺度变化比较敏感,因此在某些应用中可能需要结合其他技术来提高鲁棒性。
2025-03-05 22:01:12
741
原创 Open CV:图像特征
图像特征是图像处理中非常重要的概念。它们是图像的简化表示,捕捉了图像的关键属性,使我们能够进行各种分析、识别和理解任务。通过选择合适的图像特征和特征提取方法,可以有效地解决各种图像处理问题。
2025-03-05 20:27:13
285
原创 Open CV:Hu 矩 (Hu Moments)
Hu 矩是一种强大的形状描述符,对于平移、旋转和尺度变化具有不变性。通过计算和比较 Hu 矩,可以实现形状识别、形状匹配等应用。在使用时,请注意数值稳定性和归一化问题。
2025-03-05 19:22:47
357
原创 Open CV:轮廓的特征
轮廓特征是描述轮廓形状的重要工具,可以帮助我们理解、识别和比较不同的形状。通过选择合适的轮廓特征,可以有效地解决各种图像分析和识别问题。
2025-03-05 17:36:36
964
原创 Open CV:轮廓检测
在图像处理中,轮廓可以定义为将具有相同颜色或强度的连续点连接起来的曲线。简单来说,轮廓就是图像中物体的外边界。轮廓检测是一种重要的图像处理技术,通过提取图像中对象的边界,为后续的图像分析和识别提供基础。掌握轮廓检测的基本步骤和常用算法,可以帮助我们更好地理解和应用图像处理技术。
2025-03-05 12:08:49
574
原创 Open CV:霍夫变换
霍夫变换是一种强大且有效的几何形状检测技术,其在图像分析和处理中的应用非常广泛,尤其是在形状检测方面。通过适当的参数设置,可以灵活地检测不同类型的线条和形状。
2025-03-04 23:56:50
1223
原创 Open CV:模板匹配
首先,需要选择一个小的图像区域作为模板。这一模板通常是希望在目标图像中找到的特征或对象的代表。模板匹配是一种强大而直观的图像处理和分析技术,其简洁的原理和广泛的应用使其在计算机视觉领域得到了广泛认可。尽管存在一些局限性,例如对光照变化和对象形状的敏感性,但在适当的环境条件下,它能够提供有效的目标检测和识别性能。CC。
2025-03-04 19:38:55
668
原创 边缘检测:Canny
Canny边缘检测是一种复杂但非常有效的边缘检测方法,通过降噪、计算梯度、非极大值抑制和边缘连接形成了一套完整的边缘检测流程。%5Csigma。
2025-03-04 15:53:11
462
原创 边缘检测:Scharr算子
Scharr算子是一个高效的边缘检测工具,通过特定的卷积核实现对图像梯度的精确计算,可以有效地提取边缘信息。其对细节和噪声的敏感性使得它在计算机视觉和图像处理领域得到了广泛应用。
2025-03-04 15:26:56
388
原创 边缘检测:Laplacian算子
Laplacian算子是一种有效的边缘检测方法,通过计算图像的二阶导数,快速找到边缘位置。尽管对噪声比较敏感,但其强大的边缘检测能力仍使其在许多领域得到了广泛应用。
2025-03-04 15:10:03
452
原创 边缘检测:Sobel算子
Sobel算子使用两个3x3的卷积核(也称为滤波器),分别用于检测水平方向和垂直方向的边缘。这两个卷积核如下:水平卷积核垂直卷积核Sobel算子是一款经典且高效的边缘检测工具,通过计算图像的水平方向和垂直方向的梯度,能够精准识别图像中的边缘。同样,其计算简单、效果显著,使得其在许多计算机视觉应用中得到了广泛的使用。
2025-03-04 14:55:35
485
原创 Open CV:边缘检测
在图像中,边缘是灰度值发生显著变化的地方,通常表示图像中物体的边界或不同区域的分隔。边缘可以是物体的轮廓、纹理变化,或者是光照变化造成的界限。边缘检测是图像处理中的关键技术,能够有效地提取和分析图像中的重要特征。随着技术的不断发展,边缘检测方法也在不断改进,提高了在复杂环境中处理图像的能力。
2025-03-04 11:19:39
239
原创 Open CV:直方图均衡化
直方图均衡化是一种简单且有效的图像处理技术,用于改善图像的整体对比度和细节表现。通过静态直方图均衡化或自适应均衡化,可以针对不同的图像特性和需求调整处理效果。
2025-03-03 19:18:32
833
原创 Open CV:直方图
直方图是图像处理中的一个基本工具,通过提供像素强度分布的信息,直方图可以帮助我们理解和分析图像的特性,并在图像增强、分割和噪声去除等方面发挥重要作用。
2025-03-03 16:04:13
333
原创 Open CV:图像平滑
均值滤波适合去除简单噪声,但可能模糊边缘。中值滤波对椒盐噪声有效,保持边缘特征。高斯滤波提供平滑效果,同时减少边缘模糊。双边滤波是高级平滑技术,既能去噪又能保留边缘。选择合适的图像平滑方法取决于具体的应用场景和所需的图像效果。
2025-03-03 11:41:51
1046
原创 Open CV:形态学操作
膨胀操作可以用数学公式表示为:其中:是输入图像。是结构元素。是输出图像。这个公式的意思是,对于结构元素的每个位置,取其覆盖下的区域的最大值。腐蚀操作的数学定义可以用下面的公式表示:其中:是输入图像。是结构元素。是输出图像。这个公式意味着,对于结构元素的每个位置,只要该位置的结构元素完全覆盖前景区域,该区域在输出中才会被保留。开运算可以用以下步骤描述:腐蚀:对输入图像进行腐蚀,得到中间结果其中是结构元素。膨胀:然后对中间结果进行膨胀,得到最终结果。
2025-03-02 23:40:00
817
原创 Open CV:几何变换
仿射变换可以用以下数学形式表示:其中:是输入点的坐标。是变换后的点的坐标。是变换矩阵的元素,控制缩放、旋转和剪切。和是平移的距离。可以将仿射变换用一个 2×3 的矩阵透视变换可以通过一个 3x3 的矩阵来描述。其一般形式如下:其中,变换矩阵以上是几何变换的一些基本操作和实现示例。通过这些变换,可以实现图像的平移、旋转、缩放、仿射和透视效果,非常适合用于图像处理和分析。
2025-03-01 20:13:10
983
原创 Open CV:图像混合
图像混合是一种强大的技巧,常用于视觉效果的增强。加权混合、掩模混合和透明度混合是实现图像混合的常用方法。通过这些方法,我们可以处理图像、制作过渡效果或进行合成等。
2025-02-28 19:45:40
274
原创 Open CV:算数运算
上述示例演示了如何使用 OpenCV 进行多种图像算数操作。通过这些算数操作,您可以实现各种图像处理效果,如增强亮度、提取特征以及合成全新的图像。
2025-02-28 17:32:53
488
原创 Open CV:彩色空间转换
不同的彩色空间在图像处理中的应用场景截然不同。通过使用 OpenCV 的 `cv2.cvtColor()` 函数,我们可以轻松实现彩色空间的转换,从而优化我们的图像处理效果。
2025-02-28 16:54:16
327
原创 Open CV:图像通道操作
图像通道的拆分与合并是图像处理的基础操作之一,可以帮助我们以更灵活的方式对图像进行处理。通过单独调整每个通道,我们能够实现更细致的图像效果和分析。
2025-02-28 15:19:12
274
原创 Open CV:图像属性
通过上述的方法,你可以轻松获取图像的各种属性,包括尺寸、通道数、数据类型及像素值等。这些信息有助于你在进行图像处理、分析和计算时做好准备。
2025-02-28 14:53:11
305
原创 Open CV:像素点操作
通过获取和修改图像中的像素点,我们可以实现各种图像处理和效果。无论是单个像素的修改还是多个像素区域的处理,OpenCV 都提供了简单而直观的方式。
2025-02-28 12:25:19
210
原创 Open CV:图像I/O操作
通过 OpenCV,可以高效地执行图像和视频的 I/O 操作,包括读取、显示、保存图像,录制和播放视频等。以上示例展示了如何进行这些基本操作。
2025-02-28 10:25:59
138
原创 图像处理:Open CV
OpenCV 是一个功能强大且灵活的库,适用于各种计算机视觉和图像处理任务。其易用性和广泛的文档支持使得无论是初学者还是专业研究人员都能够快速上手并应用于实际项目中。
2025-02-26 20:39:21
512
原创 图像处理介绍
图像处理是一个快速发展的领域,随着计算机性能和算法的进步,其应用也在不断扩展。掌握图像处理的基本技术和工具,将为从事相关领域的研究和开发打下坚实的基础。
2025-02-26 20:12:44
283
原创 深度学习:Oxford-IIIT Pet Dataset数据集
类别:数据集中包含 37 种不同的宠物品种(包括猫和狗),每种宠物都有多个图像样本。图像数量:总共有 7,349 张图像。标注信息:每张图像都有对应的分割掩码,掩码标识了宠物的不同部分(如身体、头部等)。每张图像还包含品种标签,指示该图像中宠物的类别。数据分布:数据集中包含 25 种狗的品种和 12 种猫的品种。Oxford-IIIT Pet Dataset 是一个重要的数据集,适用于图像分割和分类任务,尤其在宠物领域的研究中。
2025-02-26 19:32:59
393
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人