有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出 最优选法的方案数。注意答案可能很大,请输出答案模 109+7 的结果。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示 方案数 模 109+7 的结果。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 6
输出样例:
2
代码
#include <iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1005],g[1005];//f[i]存储最大价值,g[i]存储方案数
const int MOD=1e9+7,INF=-1e8;//不能初始化为小于-1e3的数,因为最大价值有可能大于它,导致结果错误
int main()
{
int n,m;
cin>>n>>m;//输入物品数量和背包体积
memset(f,INF,sizeof(f));//因为要计算体积恰好是m的方案数,所以其只能由体积为0的状态转移过来
f[0]=0;//即选0件物品时除了f[0]=0外,其他的体积都为负无穷大
g[0]=1;//体积为0时,前i件物品选0件的方案数为1
for(int i=1;i<=n;i++){//循环i件物品
int v,w;
cin>>v>>w;//输入第i件物品的体积和价值
for(int j=m;j>=v;j--){//01背包问题,体积从大到小
//记录选或不选第i件物品的最大值,因为有可能选和不选的最大价值都一样
int t=max(f[j],f[j-v]+w);//此时最大价值的方案数即两者的方案数之和
int s=0;//记录方案数
if(t==f[j])//不选第i件物品时取得最大价值
s+=g[j];//累计方案数
if(t==f[j-v]+w)//注意点:这里不要漏了w,选第i件物品时取得最大价值
s+=g[j-v];//累计方案数
if(s>MOD)//防止结果大于MOD
s-=MOD;//可替换为求余操作
f[j]=t;//更新选或不选第i件物品的最大价值
g[j]=s;//更新前i件物品容量为j时取得最大价值的方案数
}
}//前n件物品选或不选容量小于等于m时的最大价值
int max_w= *max_element(f,f+m+1);//因为最大价值可能只用了体积j(0<=j<=m),所以要求最大值
//所有物品的体积都大于m时,j=0取得最大值
int res=0;
for(int i=0;i<=m;i++){
if(f[i]==max_w)//统计所有能取得最大价值的方案数
res+=g[i];
if(res>MOD)
res-=MOD;
}
cout<<res<<endl;//输出方案数
return 0;
}