背包九讲之背包问题求方案数

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 最优选法的方案数。注意答案可能很大,请输出答案模 109+7 的结果。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示 方案数 模 109+7 的结果。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例

4 5
1 2
2 4
3 4
4 6

输出样例:

2

代码

#include <iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1005],g[1005];//f[i]存储最大价值,g[i]存储方案数
const int MOD=1e9+7,INF=-1e8;//不能初始化为小于-1e3的数,因为最大价值有可能大于它,导致结果错误
int main()
{
    int n,m;
    cin>>n>>m;//输入物品数量和背包体积
    memset(f,INF,sizeof(f));//因为要计算体积恰好是m的方案数,所以其只能由体积为0的状态转移过来
    f[0]=0;//即选0件物品时除了f[0]=0外,其他的体积都为负无穷大
    g[0]=1;//体积为0时,前i件物品选0件的方案数为1
    for(int i=1;i<=n;i++){//循环i件物品
        int v,w;
        cin>>v>>w;//输入第i件物品的体积和价值
        for(int j=m;j>=v;j--){//01背包问题,体积从大到小
            //记录选或不选第i件物品的最大值,因为有可能选和不选的最大价值都一样
            int t=max(f[j],f[j-v]+w);//此时最大价值的方案数即两者的方案数之和
            int s=0;//记录方案数
            if(t==f[j])//不选第i件物品时取得最大价值
                s+=g[j];//累计方案数
            if(t==f[j-v]+w)//注意点:这里不要漏了w,选第i件物品时取得最大价值
                s+=g[j-v];//累计方案数
            if(s>MOD)//防止结果大于MOD
                s-=MOD;//可替换为求余操作
            f[j]=t;//更新选或不选第i件物品的最大价值
            g[j]=s;//更新前i件物品容量为j时取得最大价值的方案数
        }
    }//前n件物品选或不选容量小于等于m时的最大价值
    int max_w= *max_element(f,f+m+1);//因为最大价值可能只用了体积j(0<=j<=m),所以要求最大值
    //所有物品的体积都大于m时,j=0取得最大值
    int res=0;
    for(int i=0;i<=m;i++){
        if(f[i]==max_w)//统计所有能取得最大价值的方案数
            res+=g[i];
        if(res>MOD)
            res-=MOD;
    }
    cout<<res<<endl;//输出方案数
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值