面试常见算法-排序查找算法

算法是程序员必被的一个技能,在面试中常常出现,下面总结了面试中出现的常见算法,这些算法程序员应该牢记在心中,要非常熟练。 

插入排序算法

原理:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。

要点:设立哨兵,作为临时存储和判断数组边界之用。

1.	public class InsertSort {  
2.	   private static void insertSort(int[] a) {  
3.	       int j;  
4.	       int tmp;  
5.	       for (int i = 1; i < a.length; i++) {  
6.	           tmp = a[i];  
7.	           for (j = i; j > 0 && tmp < a[j - 1]; j--) {  
8.	                a[j] = a[j - 1];  
9.	           }  
10.	           a[j] = tmp;  
11.	       }  
12.	    }  
13.	}  

希尔排序算法

原理:又称增量缩小排序。先将序列按增量划分为元素个数相同的若干组,使用直接插入排序法进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。

要点:增量的选择以及排序最终以1为增量进行排序结束。

public class ShellSort {  
    private static void shellSort(int[] a) {  
        int j;  
        int tmp;  
        for (int gap = a.length / 2; gap >0; gap /= 2) {  
            for (int i = gap; i < a.length;i++) {  
                tmp = a[i];  
                for (j = i; j >= gap && tmp< a[j - gap]; j -= gap) {  
                    a[j] = a[j - gap];  
                }  
                a[j] = tmp;  
            }  
        }  
    }  
}  

冒泡排序算法

原理:将序列划分为无序和有序区,不断通过交换较大元素至无序区尾完成排序。

要点:设计交换判断条件,提前结束以排好序的序列循环。

public class BubbleSort {  
   private static void bubbleSort(int[] a) {  
        for (int i = 0; i < a.length - 1;i++) {  
           for (int j = 0; j < a.length - 1 - i; j++) {  
                if (a[j] > a[j + 1]) {  
                    swap(a, j, j + 1);  
                }  
           }  
       }  
    }  
   private static void swap(int[] a, int x, int y) {  
       int tmp = a[x];  
       a[x] = a[y];  
       a[y] = tmp;  
    }  
}  

快速排序算法

原理:不断寻找一个序列的中点,然后对中点左右的序列递归的进行排序,直至全部序列排序完成,使用了分治的思想。

要点:递归、分治

public class QuickSort {  
   private static void quickSort(int[] a) {  
       quickSort(a, 0, a.length - 1);  
    }  
   private static void quickSort(int[] a, int left, int right) {  
       if (left < right) {  
           int pivot = a[left];  
           int lo = left;  
           int hi = right;  
           while (lo < hi) {  
                while (lo < hi &&a[hi] >= pivot) {  
                    hi--;  
                }  
                a[lo] = a[hi];  
                while (lo < hi &&a[lo] <= pivot) {  
                    lo++;  
                }  
                a[hi] = a[lo];  
           }  
           a[lo] = pivot;  
           quickSort(a, left, lo - 1);  
           quickSort(a, lo + 1, right);  
       }  
    }  
}  

简单选择排序算法

原理:将序列划分为无序和有序区,寻找无序区中的最小值和无序区的首元素交换,有序区扩大一个,循环最终完成全部排序

public class SelectSort {  
   private static void selectSort(int[] a) {  
       int idx;  
       for (int i = 0; i < a.length; i++) {  
           idx = i;  
           for (int j = i + 1; j < a.length; j++) {  
                if (a[idx] > a[j]) {  
                    idx = j;  
                }  
           }  
           swap(a, idx, i);  
       }  
    }  
   private static void swap(int[] a, int x, int y) {  
       int tmp = a[x];  
       a[x] = a[y];  
       a[y] = tmp;  
    }  
}  

堆排序算法

原理:利用大根堆或小根堆思想,首先建立堆,然后将堆首与堆尾交换,堆尾之后为有序区。

要点:建堆、交换、调整堆

public class HeapSort {  
   private static void heapSort(int[] a) {  
       // 先创建大堆,从第一个非叶子结点开始调整,然后调整第二个非叶子结点...  
       for (int i = a.length / 2; i >= 0 ; i--) {  
           shiftDown(a, i, a.length);  
       }  
       // 调整大堆,将最大的元素调整到未排好序的部分的末尾  
       for (int i = a.length - 1; i > 0 ; i--) {  
           swap(a, 0, i);  
           shiftDown(a, 0, i);  
       }  
    }  
   private static void shiftDown(int[] a, int i, int n) {  
       int child;  
       int tmp;  
       for (tmp = a[i]; i * 2 + 1 < n; i = child) {  
           child = i * 2 + 1;  
           if (child != n - 1 && a[child] < a[child + 1]) {  
                child++;  
           }  
           if (tmp < a[child]) {  
                a[i] = a[child];  
            } else {  
                break;  
           }  
       }  
       a[i] = tmp;  
    }  
   private static void swap(int[] a, int x, int y) {  
       int tmp = a[x];  
       a[x] = a[y];  
       a[y] = tmp;  
    }  
}  


归并排序算法

原理:将原序列划分为有序的两个序列,然后利用归并算法进行合并,合并之后即为有序序列。

要点:归并、分治

public class MergeSort {  
   private static void mergeSort(int[] a) {  
       int[] b = new int[a.length];  
       mergeSort(a, b, 0, a.length - 1);  
    }  
   private static void mergeSort(int[] a, int[] b, int left, int right) {  
       if (left < right) {  
           int center = left + (right - left) / 2;  
           mergeSort(a, b, left, center);  
           mergeSort(a, b, center + 1, right);  
           merge(a, b, left, center + 1, right);  
       }  
    }  
   private static void merge(int[] a, int[] b, int leftPos, int rightPos, intrightEnd) {  
       int leftEnd = rightPos - 1;  
       int tempPos = leftPos;  
       int numElements = rightEnd - leftPos + 1;  
   
       while (leftPos <= leftEnd && rightPos <= rightEnd) {  
           if (a[leftPos] <= a[rightPos]) {  
                b[tempPos] = a[leftPos];  
                tempPos++;  
                leftPos++;  
           } else {  
                b[tempPos] = a[rightPos];  
                tempPos++;  
                rightPos++;  
           }  
       }  
       while (leftPos <= leftEnd) {  
           b[tempPos] = a[leftPos];  
           tempPos++;  
           leftPos++;  
       }  
       while (rightPos <= rightEnd) {  
           b[tempPos] = a[rightPos];  
           tempPos++;  
           rightPos++;  
       }  
       for (int i = 0; i < numElements; i++, rightEnd--) {  
           a[rightEnd] = b[rightEnd];  
       }  
    }  
}  

二分查找算法

public class BinarySearch {  
   public static int binarySearch(int[] a, int v) {  
       int mid;  
       int lo = 0;  
       int hi = a.length - 1;  
       while (lo <= hi) {  
           mid = lo + ((hi - lo) >>> 1); // 移位运算的优先级比较低,要用括号  
           if (a[mid] == v) { // 已经找到  
                return mid;  
           } else if (a[mid] < v) { // 可能在右边  
                lo = mid + 1;  
           } else { // 可能在左边  
                hi = mid - 1;  
           }  
       }  
       return -1; // 未找到  
    }  
}  




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值