一、定义
-
每个数等于它上方两数之和。
-
每行数字左右对称,由1开始逐渐变大。
-
第n行的数字有n项。
-
前n行共[(1+n)n]/2 个数。
-
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
-
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
-
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
-
(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
-
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
-
将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。
-
第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。
-
斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。
-
将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。
上面是杨辉三角最详细的讲解,但是本次我们的讲解只会从最简单的方向出发,比如我把杨辉三角简化了一下,方便我们在编程中实现!!
就像上面这幅图,我们今天就从它入手讲解杨辉三角。
先观察它的特点,比如第一列都是1,斜边都是1,然后剩下的数都是它上面加上它左边!!
由此,我们便可以得出代码:
int main()
{
int arr[10][10] = { 0 };//创建二维数组
int i = 0;
int j = 0;
for (i = 0; i < 10; i++)
{
for (j = 0; j < 10; j++)
{
if (j == 0)
{
arr[i][j] = 1;//把第一列都是1
}
if (i == j)
{
arr[i][j] = 1;//斜边都是1,此时i和j相等
}
if (i >= 2 && j >= 1)
{
arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
}
}
}
for (i = 0; i < 10; i++)
{
for (j = 0; j <= i; j++)
{
printf("%d ", arr[i][j]);//打印时只用把二维数组的一半打印出来即可,就像
上面那个图一样
}
printf("\n");
}
return 0;
}
上面的代码段很好的把这个代码打了出来,最后的注释也是对这段代码很好的理解!!
但是自己这个杨辉三角的打印只是初阶的,我并没有把空格打印出来,其实要想打印出空格,我可以再写一篇博客,关于各种图形的打印,其中金字塔的打印可以让我们更好的理解空格如何打印出来,如果大家感兴趣,可以关注我下一篇的博客,谢谢大家喽!!!