51nod 1240 莫比乌斯函数 【数论基础】

51nod 1240 莫比乌斯函数  【数论基础】

基准时间限制:1  秒 空间限制:131072  KB 分值:  0   难度:基础题
 收藏
 关注
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1


#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
int miu(int n){
 int num=1;
 for(int i=2;i*i<=n;i++){
  if(n%i==0){
   num++;
   int cnt=0;
   while(n%i==0){
    n/=i;cnt++;
   }
   if(cnt>=2)return 0;
  }
 }
 if(n==1) return 1;
 return num%2==0?1:-1;
}
int main(){
 int n;
    cin>>n;
    cout<<miu(n);   
    return 0;



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值