金华集训Day5——宇

7 篇文章 0 订阅
7 篇文章 0 订阅

网络流

定义

\qquad 一个流网络 G = ( V , E ) G=(V,E) G=(V,E)为一张满足以下条件的有向图:
\qquad\qquad 1.每一条边有一个非负容量,即对于任意 E E E中的 ( u , v ) (u,v) (u,v),有
c = ( u , v ) ≥ 0 \qquad \qquad c=(u,v)≥0 c=(u,v)0
\qquad\qquad 2.如果 G G G中存在边 ( u , v ) (u,v) (u,v),那么不存在 ( v , u ) (v,u) (v,u)。我们将图中不存在的边
\qquad\qquad 的容量定为 0 0 0
\qquad\qquad 3.图中含有两个特殊节点:源 s s s与汇 t t t
\qquad 一个流可以看做是一个从 V × V V×V V×V R R R的映射,满足下面两条性质:
\qquad\qquad 1.容量限制:对于任意的 u , v u,v u,v 0 ≤ f ( u , v ) ≤ c ( u , v ) 0≤f(u,v)≤c(u,v) 0f(u,v)c(u,v)
\qquad\qquad 2.流量守恒:对于任何非源汇的中间节点 u u u,我们有 ∑ v ∈ V f ( v , u ) = ∑ v ∈ V f ( u , v ) \sum_{v\in V}f(v,u)=\sum_{v\in V}f(u,v) vVf(v,u)=vVf(u,v)

最大流

\qquad 最大流问题,即是找出一个满足上述条件的 F F F,使得 ∑ v ∈ V f ( s , v ) \sum_{v\in V}f(s,v) vVf(s,v)被最大化
\qquad 最大流问题->带反向边的的最大流问题
\qquad 多源汇最大流问题
\qquad 一个流 f f f的流量 ∣ f ∣ |f| f定义为: ∣ f ∣ = ∑ v ∈ V f ( s , v ) − ∑ v ∈ V f ( v , s ) |f|=\sum_{v\in V}f(s,v)-\sum_{v\in V}f(v,s) f=vVf(s,v)vVf(v,s)

最大流建模

\qquad 点容量的解决办法:拆点,将容量限制转化到边上。

最大流算法-从几个基本想法开始

增广路

定理一:最大流最小切割定理

\qquad 对于一个网络 G G G,下面三个命题总是等价
⋅ \qquad\qquad · f f f G G G的最大流。
⋅ \qquad\qquad · 当前流 f f f是残量网络 G _ f G\_f G_f上不存在增广路。
⋅ \qquad\qquad · 存在某个割使得 ∣ f ∣ = c ( S , T ) |f|=c(S,T) f=c(S,T)成立。由结论2可知,满足条件的割必
\qquad\qquad 定是最小割。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值