《计算方法》笔记之(二)线性代数方程组之Gauss消去法


本章的重点在于求解下列线性方程组:
{ α 11 x 1 + α 12 x 2 + ⋯ + α 1 n x n = β 1 α 21 x 1 + α 22 x 2 + ⋯ + α 2 n x n = β 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ α n 1 x 1 + α n 2 x 2 + ⋯ + α n n x n = β n \left\{\begin{matrix} { {\alpha _{11}}{x_1} + {\alpha _{12}}{x_2} + \cdots + {\alpha _{1n}}{x_n} = {\beta _1}}\\ { {\alpha _{21}}{x_1} + {\alpha _{22}}{x_2} + \cdots + {\alpha _{2n}}{x_n} = {\beta _2}}\\ { \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots }\\ { {\alpha _{n1}}{x_1} + {\alpha _{n2}}{x_2} + \cdots + {\alpha _{nn}}{x_n} = {\beta _n}} \end{matrix}\right. α11x1+α12x2++α1nxn=β1α21x1+α22x2++α2nxn=β2αn1x1+αn2x2++αnnxn=βn

方程组可以转化为:
A x = B Ax=B Ax=B
其中:
A = [ α 11 α 12 ⋯ α 1 n α 21 α 22 ⋯ α 2 n ⋯ ⋯ ⋯ ⋯ α n 1 α n 2 ⋯ α n n ] , x = [ x 1 x 2 ⋮ x n ] , b = [ β 1 β 2 ⋮ β n ] A = \begin{bmatrix} { {\alpha _{11}}}&{ {\alpha _{12}}}& \cdots &{ {\alpha _{1n}}}\\ { {\alpha _{21}}}&{ {\alpha _{22}}}& \cdots &{ {\alpha _{2n}}}\\ \cdots & \cdots & \cdots & \cdots \\ { {\alpha _{n1}}}&{ {\alpha _{n2}}}& \cdots &{ {\alpha _{nn}}} \end{bmatrix} ,x=\begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{bmatrix},b = \begin{bmatrix} { {\beta _1}}\\ { {\beta _2}}\\ \vdots \\ { {\beta _n}} \end{bmatrix} A=α11α21αn1α12α22αn2α1nα2nαnn,x=x1x2xn,b=β1β2βn
则:
法 1 求逆
根据矩阵的思想,
x = A − 1 B x=A^{-1}B x=A1B
求逆的方法有很多,那么该算法的复杂性就取决于求逆的方法。
法 2 Crammer 法则
x i = ∣ A i ∣ ∣ A ∣ , i = 1 , 2 , . . . , n x_i=\frac {|A_i|} {|A|},i=1,2,...,n xi=AAi,i=1,2,...,n
其中, ∣ A ∣ |A| A 是系数矩阵行列式, ∣ A i ∣ |A_i| Ai 是以右端向量 b 代替 A 的第 i 列所得的矩阵的行列式。

计算量为求矩阵的行列式(下面是行列式的定义式):
∣    A    ∣ = ∑ ( − 1 ) J ( i 1 , i 2 ⋯ i n ) α 1 i 1 α 2 i 2 ⋯ α n i n \left| {\;{\bf{A}}\;} \right| = \sum { { {( - 1)}^{J({i_1},{i_2} \cdots {i_n})}}{\alpha _{1{i_1}}}{\alpha _{2{i_2}}} \cdots {\alpha _{n{i_n}}}} A=(1)J(i1,i2

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值