1.反常积分收敛临界判断
2.微分等等
1.在x=0处可导,代表是x的高阶无穷小函数即可,即幂>=1。
2.对1积分,表示求积分区域的最高维度的几何意义(位移,面积,体积
;曲线有:曲线长,曲面面积,曲体体积)
3.任何等式都可以写成1*f(x)=f(x)
常用于公式泛化
4.(cosx)^2+(sinx)^2=1
5.等价无穷小,比值为1;
6.纯正项(负项)的数列比较大小,作除法
3.导数相关
反函数:f(x)’*f[x^(-1)]’=1
垂直:k1*k2=-1
另一种垂直:两个方向向量内积=0
4.概率论
分布律累加=1
概率分布函数(如标准正态分布)<=1
特别的:pi^0.5
相关公式:正相关时:ρ=1
置信度1-α,F(?)表示标准正态分布的分布函数
F(?)+α/2=1
F(?)一般由题目给出
6.不相关---0
线性无关
变量相互独立或者说简单随机样本
5求根公式相关
验证公式:AC-B^2无条件极值:用求根公式的验证公式的负数形式表示,正有负不一定
求根公式:二阶线性微分方程的通解对应形式,有解无解都有对应公式
6.待定系数法
拆分原则中有待定系数法,待定每一项都符合阶数为-1阶
二阶线性微分方程中也有待定系数法,等式右边待定为特解形式,形式与特解情况相关。