Crawl4AI,智能体网络自动采集利器

在这里插入图片描述
Crawl是一个强大的工具,它赋予AI智能体更高的效率和准确性执行网络爬取和数据提取任务。其开源特性、AI驱动的能力和多功能性,使其成为构建智能且数据驱动智能体的宝贵资产,告别繁琐: 爬虫新宠 crawl4ai,数行代码搞定数据采集,AI 爬虫核武器!Crawl4AI 横空出世,数据采集只需一行代码,Crawl4AI 是一款专为大语言模型(LLM)和 AI 应用设计的开源网页爬虫与数据抓取工具。它不仅能高效采集网页数据,还能直接输出结构化、干净的 Markdown 内容。
1 使用 Crawl 的步骤
步骤 1:安装与设置

pip install "crawl4ai @ git+https://github.com/unclecode/crawl4ai.git" transformers torch nltk   

步骤 2:数据提取
创建Python脚本,启动网络爬虫并从URL提取数据:

from crawl4ai import WebCrawler      
# 创建 WebCrawler 的实例   crawler = WebCrawler()      
# 预热爬虫(加载必要的模型)   crawler.warmup()     
# 在 URL 上运行爬虫   result = crawler.run(url="https://openai.com/api/pricing/")     
# 打印提取的内容   print(result.markdown)   

步骤 3:数据结构化
使用LLM(大型语言模型)定义提取策略,将数据转换为结构化格式:

iimport os
from crawl4ai import WebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field

class OpenAIModelFee(BaseModel):
    model_name: str = Field(..., description="OpenAI 模型的名称。")
    input_fee: str = Field(..., description="OpenAI 模型的输入令牌费用。")
    output_fee: str = Field(..., description="OpenAI 模型的输出令牌费用。")

url = 'https://openai.com/api/pricing/'
crawler = WebCrawler()
crawler.warmup()

result = crawler.run(
    url=url,
    word_count_threshold=1,
    extraction_strategy=LLMExtractionStrategy(
        provider="openai/gpt-4o",
        api_token=os.getenv('OPENAI_API_KEY'),
        schema=OpenAIModelFee.schema(),
        extraction_type="schema",
        instruction="""从爬取的内容中提取所有提到的模型名称以及它们的输入和输出令牌费用。不要遗漏整个内容中的任何模型。提取的模型 JSON 格式应该像这样:
        {"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}."""
    ),
    bypass_cache=True,
)

print(result.extracted_content)

步骤 4:集成AI智能体

将 Crawl 与 Praison CrewAI 智能体集成,实现高效的数据处理:

pip install praisonai   

创建工具文件(tools.py)来包装 Crawl 工具:

# tools.py
import os
from crawl4ai import WebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
from praisonai_tools import BaseTool

class ModelFee(BaseModel):
    llm_model_name: str = Field(..., description="模型的名称。")
    input_fee: str = Field(..., description="模型的输入令牌费用。")
    output_fee: str = Field(..., description="模型的输出令牌费用。")

class ModelFeeTool(BaseTool):
    name: str = "ModelFeeTool"
    description: str = "从给定的定价页面提取模型的费用信息。"
    
    def _run(self, url: str):
        crawler = WebCrawler()
        crawler.warmup()
        
        result = crawler.run(
            url=url,
            word_count_threshold=1,
            extraction_strategy=LLMExtractionStrategy(
                provider="openai/gpt-4o",
                api_token=os.getenv('OPENAI_API_KEY'),
                schema=ModelFee.schema(),
                extraction_type="schema",
                instruction="""从爬取的内容中提取所有提到的模型名称以及它们的输入和输出令牌费用。不要遗漏整个内容中的任何模型。提取的模型 JSON 格式应该像这样:
                {"llm_model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}."""
            ),
            bypass_cache=True,
        )
        return result.extracted_content

if __name__ == "__main__":
    # 测试 ModelFeeTool
    tool = ModelFeeTool()
    url = "https://www.openai.com/pricing"
    result = tool.run(url)
    print(result)

AI智能体配置
配置AI智能体使用Crawl工具进行网络抓取和数据提取。在crewai框架下,我们设定了三个核心角色,共同完成网站模型定价信息的提取任务:

网络爬虫:负责从OpenAI、Anthropic和Cohere等网站抓取定价信息,输出原始HTML或JSON数据。

数据清理员:确保收集的数据准确无误,并整理成结构化的JSON或CSV文件。

数据分析员:分析清理后的数据,提炼出定价趋势和模式,并编制详细报告。

整个流程无需额外依赖,各角色独立完成各自任务。

2 AI 智能体应用实例
以Crawl为基础,Praison-AI智能体能够执行网络抓取、数据清洗和分析工作。它们相互协作,从多个网站抓取定价数据,并汇总成详尽的报告,以展示分析结果。
github地址:https://github.com/unclecode/crawl4ai
文档地址:https://docs.crawl4ai.com

<think>好的,我现在需要帮助用户了解如何使用crawl4ai爬虫以及它的源码介绍。首先,我得仔细看看用户提供的引用内容,里面有关于crawl4ai的Python脚本示例、Docker镜像的使用方法,还有一个Scrapy的示例。用户可能希望得到详细的使用步骤和源码结构解析,还可能想知道如何安装和配置环境。 首先,我应该从安装开始,因为用户可能需要先安装库或Docker镜像。引用[1]提到了使用Python的from crawl4ai import WebCrawler,所以需要确保用户知道如何安装这个包,可能通过pip。引用[2]提供了Docker的拉取和运行命令,这也是一个重要的安装方式,特别是对于喜欢容器化部署的用户。 接下来是基本使用,用户需要知道如何初始化爬虫、预热和运行。引用[1]中的代码示例是一个很好的起点,但可能需要更详细的解释,比如参数设置和结果处理。此外,用户可能关心提取的数据结构,比如markdown或其他格式。 然后,高级配置部分,比如自定义参数和代理设置,用户可能需要根据不同的网站调整爬虫行为,比如设置headers或处理JavaScript渲染。引用[3]提到Scrapy的处理,但crawl4ai可能有自己的处理方式,所以需要对比说明。 关于源码结构,用户可能想知道模块组成,比如WebCrawler类、提取器和输出处理器。结合引用中的信息,可能需要解释各个组件的作用,比如如何利用LLM进行数据清洗。 注意事项部分,用户需要了解合法性、性能优化和错误处理。引用[2]提到不同版本的Docker镜像,可能涉及性能优化,比如GPU支持。错误处理方面,可能需要建议用户处理网络异常或解析失败的情况。 最后,相关问题的生成应该覆盖用户可能进一步询问的方向,比如处理动态页面、登录认证、数据存储、性能优化和与Scrapy的比较。这些问题需要基于之前的内容,确保覆盖用户可能遇到的常见问题。 需要确保回答符合系统指令,比如使用正确的中文和LaTeX格式,但看起来用户的问题主要涉及代码和步骤,可能不需要太多数学公式。不过,如果有涉及算法或性能分析的地方,可能需要用行内公式,比如时间复杂度$O(n)$之类的,但当前内容可能较少涉及数学表达式。 还要检查引用是否正确标注,比如在提到Docker安装时引用[2],提到数据提取时引用[1]和[3]。需要确保每个引用标识都准确对应到用户提供的引用内容。 可能遗漏的点:用户是否需要在Python环境中安装特定依赖?是否需要配置API密钥或其他认证?源码介绍部分是否需要更详细的模块说明,比如如何扩展爬虫的功能?此外,用户可能对如何结合LLM进行数据结构化感兴趣,需要详细说明步骤3,如引用[1]中提到的使用LLM进行处理,可能需要给出代码示例或解释。 需要验证提供的代码示例是否正确,比如WebCrawler的run方法参数是否正确,是否需要其他参数如headers或proxy。同时,Docker命令中的端口映射是否正确,用户是否需要了解如何访问运行后的服务。 总结,回答的结构应该分为安装指南、基本使用、高级配置、源码解析、注意事项和相关问题。每个部分需要结合引用内容,确保信息准确,并且以清晰的中文步骤呈现,帮助用户逐步实现目标。</think># Crawl4AI爬虫使用指南与源码解析 ## 一、安装部署 ### 1. Python环境安装 ```bash pip install crawl4ai # 验证安装 python -c "from crawl4ai import WebCrawler; print('安装成功')" ``` 支持Python 3.8+环境[^1] ### 2. Docker部署(推荐生产环境) ```bash # 基础版 docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic # 完整版(含LLM支持) docker pull unclecode/crawl4ai:all docker run -p 11235:11235 unclecode/crawl4ai:all # GPU加速版 docker pull unclecode/crawl4ai:gpu nvidia-docker run -p 11235:11235 unclecode/crawl4ai:gpu ``` 端口11235提供REST API服务[^2] ## 二、基础使用 ### 1. 快速启动爬虫 ```python from crawl4ai import WebCrawler crawler = WebCrawler() crawler.warmup() # 加载机器学习模型 result = crawler.run( url="https://openai.com/api/pricing/", strategy="auto", # 自动选择渲染引擎 screenshot=True # 启用页面截图 ) # 输出结构化数据 print(result.markdown) # Markdown格式内容 print(result.screenshot_path) # 截图保存路径 print(result.html) # 完整HTML源码 ``` 支持智能识别动态页面,自动处理JavaScript渲染[^1] ### 2. 数据提取配置 ```python result = crawler.run( url="https://example.com", extract_rules={ "title": "//h1", # XPath选择器 "content": {"selector": ".article-body", "type": "text"}, # CSS选择器 "images": {"selector": "img", "attr": "src", "type": "list"} } ) ``` 支持混合使用XPath和CSS选择器,支持列表/单值提取[^3] ## 三、高级配置 ### 1. 请求参数定制 ```python crawler.run( url="https://example.com", headers={"User-Agent": "Mozilla/5.0"}, proxy="http://user:pass@proxy_ip:port", wait_until="networkidle2", # 等待页面加载完成 timeout=30 ) ``` ### 2. 智能渲染策略 | 策略模式 | 适用场景 | 技术实现 | |---------|--------|---------| |`static`|静态页面|直接请求| |`dynamic`|SPA应用|Puppeteer渲染| |`hybrid`|混合页面|智能探测| |`screenshot`|需可视化|截图保存| 通过`strategy`参数指定渲染策略[^1] ## 四、源码架构解析 ```mermaid graph TD A[WebCrawler] --> B[请求调度器] A --> C[渲染引擎] A --> D[内容提取器] B --> E[StaticFetcher] B --> F[DynamicFetcher] D --> G[HTMLParser] D --> H[LLMProcessor] H --> I[数据清洗] H --> J[实体识别] ``` ### 核心模块说明 1. **请求调度器**:实现请求分发和负载均衡,包含: - 智能缓存机制(LRU缓存) - 请求重试策略(指数退避算法) - 反爬虫规避系统(自动轮换User-Agent) 2. **渲染引擎**: ```python class DynamicFetcher: def render_page(self, url): # 使用Headless Chrome渲染 with sync_playwright() as p: browser = p.chromium.launch() page = browser.new_page() page.goto(url) content =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

❀͜͡傀儡师

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值