文本生成评估指标

文章介绍了评估自然语言生成任务性能的五个关键指标:Perplexity衡量语言模型的预测能力,BLEU通过n-gram重叠度评估生成质量,ROUGE关注召回率,METEOR考虑词汇、语法和语义相似度,CIDEr针对图像描述任务,而MoverScore评估语义距离。这些指标各有侧重点,适用于不同的应用场景。
摘要由CSDN通过智能技术生成

1.Perplexity

Perplexity(困惑度)是衡量语言模型预测能力的指标。它是给定一个测试集后,模型为了预测该测试集上的下一个词,所需要的平均困惑度。困惑度越低,模型的预测效果越好。

公式: P e r p l e x i t y = 2 − 1 N ∑ i = 1 N l o g 2 P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) Perplexity = 2^{-\frac{1}{N}\sum_{i=1}^{N}log_2P(w_i|w_1,w_2,...,w_{i-1})} Perplexity=2N1i=1Nlog2P(wiw1,w2,...,wi1)

其中, N N N为测试集中的词数, P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) P(w_i|w_1,w_2,...,w_{i-1}) P(wiw1,w2,...,wi1)是给定前 i − 1 i-1 i1个词的条件下预测第 i i i个词的概率。

举例:假设测试集中有100个词,我们的语言模型在预测这些词时,平均每个词的困惑度为10。则该模型的Perplexity为 2 − 1 100 ∑ i = 1 100 l o g 2 P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) = 2 10 = 1024 2^{-\frac{1}{100}\sum_{i=1}^{100}log_2P(w_i|w_1,w_2,...,w_{i-1})} = 2^{10} = 1024 21001i=1100log2P(wiw1,w2,...,wi1)=210=1024

2.BLEU

BLEU(双语评估下的语言理解度)是用于自然语言生成任务的评估指标。它通过计算生成的句子与参考答案之间的n-gram重叠度来衡量生成结果的质量。BLEU的值越高,表示生成结果越接近参考答案。

公式: B L E U = B P ⋅ e x p ( ∑ n = 1 N w n l o g p n ) BLEU = BP \cdot exp(\sum_{n=1}^Nw_nlogp_n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值