1.Perplexity
Perplexity(困惑度)是衡量语言模型预测能力的指标。它是给定一个测试集后,模型为了预测该测试集上的下一个词,所需要的平均困惑度。困惑度越低,模型的预测效果越好。
公式: P e r p l e x i t y = 2 − 1 N ∑ i = 1 N l o g 2 P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) Perplexity = 2^{-\frac{1}{N}\sum_{i=1}^{N}log_2P(w_i|w_1,w_2,...,w_{i-1})} Perplexity=2−N1∑i=1Nlog2P(wi∣w1,w2,...,wi−1)
其中, N N N为测试集中的词数, P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) P(w_i|w_1,w_2,...,w_{i-1}) P(wi∣w1,w2,...,wi−1)是给定前 i − 1 i-1 i−1个词的条件下预测第 i i i个词的概率。
举例:假设测试集中有100个词,我们的语言模型在预测这些词时,平均每个词的困惑度为10。则该模型的Perplexity为 2 − 1 100 ∑ i = 1 100 l o g 2 P ( w i ∣ w 1 , w 2 , . . . , w i − 1 ) = 2 10 = 1024 2^{-\frac{1}{100}\sum_{i=1}^{100}log_2P(w_i|w_1,w_2,...,w_{i-1})} = 2^{10} = 1024 2−1001∑i=1100log2P(wi∣w1,w2,...,wi−1)=210=1024。
2.BLEU
BLEU(双语评估下的语言理解度)是用于自然语言生成任务的评估指标。它通过计算生成的句子与参考答案之间的n-gram重叠度来衡量生成结果的质量。BLEU的值越高,表示生成结果越接近参考答案。
公式: B L E U = B P ⋅ e x p ( ∑ n = 1 N w n l o g p n ) BLEU = BP \cdot exp(\sum_{n=1}^Nw_nlogp_n)