同济高等数学:第一章第二节 数列的极限

本文深入解析数列极限的概念,通过定义解释数列如何接近极限,并给出利用定义证明极限的方法。文中通过实例展示如何找到满足条件的正整数N,同时探讨了收敛数列的性质,帮助读者更好地理解和应用数列极限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本小节我们主要把目光聚焦在数列极限的定义上面,以及如何利用定义证明极限存在。最后简单介绍下收敛数列的性质。

一、数列极限的定义

在这里插入图片描述

这个定义是令很多学习者头大的事情。接下来我们主要对这个定义加以解释。

首先我们得知道,数列的极限解决的是什么问题?

在这里插入图片描述

注: 两个数之间的接近程度可以用两个数之间差的绝对值来表示。差的绝对值越小,这两个数就越接近。

那么对于
在这里插入图片描述
的解释就迎刃而解。

它表示就是数列的第n项与极限值之间的距离。这个距离小于任意给定一个正数在这里插入图片描述具体来说呢,这个符号表示一个任意的,特别小的正数。

那么文字表述就是,数列第n项与极限值的距离小于一个任意给定的特别小的正数。这就表明数列已经很接近极限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值