三体读后感

    越来越懒了,不愿意动手,一本书看完就过。花那么久看的,一段时间回过头总是忘得一干二净,好可惜!不管文笔怎么差,还是多动动手,写给自己看。

    过年回家没看技术相关的,把三部三体看完了。一开始看是因为记得老大招聘的时候有一条是看过三体优先,当时那本书对我就很有魔力,一本科幻小说竟然能和职业生涯有关!翻开以后发现真的很有魔力,每天晚上都能梦到那些三体上的事情,到现在看完小说会觉得整个人空空的,但是思想还会游离在整个宇宙。

从第一部《地球往事》叶文洁惨痛的童年开始,到物理学家汪淼看到诸多无当时科学法解释的自然景象,诸多科学家遇难,神秘而且力量强大的三体游戏,面纱慢慢开始揭开。。。叶文洁竟然是地球叛军的首领,但是又觉得她很无辜,她只是在探索宇宙,而伊斯文的目的才是背叛地球。

    很喜欢三体游戏,里面的人物和我了解的感觉性格很相似,每个人对于三体世界的看法不同,不同的时间发现世界对恒纪元的了解也渐渐清晰,每次都希望汪淼能再进去玩游戏,能了解到游戏里为什么有变换莫测的纪元在轮换,但是又想知道到底是为什么照相机拍的照片会有倒计时,为什么杨冬会死。。。从头到尾都会感觉有十万个为什么在困扰我,而一开始很多不解之谜在后面总是能一一有解答,这应该让我舍不得不看的原因之一。当知道三体问题无解的时候很郁闷,怎么可以无解,不是按照剧情发展就应该最终能找到答案,建立一个和乐世界吗?同样一直会以为地球人不会灭亡的,最后还是倒三观了!

  在第二部《黑暗森林》里面的罗辑是我心里的白马王子那样开头的,可是总是看到开头,却怎么都猜不到结尾。这个面壁者,一开始冷冷的,酷酷的,但是越来越多情,也正是因为有爱才会让他成为正在的面壁者,领悟出叶文洁说的两条宇宙定律。还好,还好,有罗辑在,黑暗森林最后还是没有到来,而且还让地球人看到了希望。那个发三体坐标的控制器竟然对三体人有那么大的威慑作用,确实没有想到。没有想到的是罗辑可以做到欺骗三体人,而且最后无法知道他是什么时候计划的挡住太阳发送三体坐标的,似乎整个人类抛弃他是一个他和人类计划好的骗局,可是对他好不公平。

    很喜欢一个人是大史,活得很洒脱,脑子很灵活,幽默的时候让人可以从紧张的气氛中放松下俩。可以不惧那些不把他放在眼里的外国首领,开他们的玩笑的时候却是同时能把事情负责到底。对汪淼和对罗辑都一样。

看到第二部里面罗辑,看着他和大史却会想成是汪淼。呵呵,虽然一开始的性格不一样,但是都是从他们的角度来描述整个发展历程。

    讲到水滴的时候真是被震撼到了。总是以为水滴是福音的,随后发展起来也没有太坏,就像心里面想象的三体人一样,默认他们最后不会来残害地球人,但是真到一颗水滴在太阳系厮杀的时候很不甘心,怎么?不应该是和平使者吗?怎么可以那么残忍?我们地球军怎么可以那么柔弱!慢慢了解到宇宙就是宇宙,宇宙规律无情,宇宙里的人也很冷血。想到地球上的动物也是这样的,要想活命只能吃掉其他种类!

  第三部《死神永生》真的是验证了宇宙里生命的脆弱,甚至整个宇宙也是受害者,也会死亡,但是有死亡就有新生,就有希望,田园时代在梦里,那里我们又是生活在十维空间,一切刚刚开始,我们没有战争。不过宇宙的规律是不会变的,一旦发现有其他的生命不惜一切代价也要消灭!哪怕自己被降为低熵生物!

 

 

在Python编程中,"运动"通常是指模拟经典的牛顿问题,这是一个物理学上的经典问题,涉及到个质点之间的引力相互作用。这种运动通常用于展示多动力学、天力学以及数值计算方法,如欧拉法或四阶Runge-Kutta方法。 要编写这样的程序,你需要了解基本的物理定律,比如牛顿第二定律F=ma,以及如何通过向量运算表达引力作用。Python提供了诸如NumPy库来处理向量和矩阵运算,Matplotlib库则可以用来可视化运动轨迹。 下面是一个简化的示例,展示了如何使用Python的基本数学模块和循环来模拟运动: ```python import numpy as np from matplotlib import pyplot as plt # 定义常数 G = 6.674e-11 # 引力常数 m1 = m2 = m3 = 1 # 质量相同的物 r0 = [1, 0, 0] # 初始位置 v0 = [0, 0, 0] # 初始速度 # 设置时间步长和总时间 dt = 0.01 total_time = 10 # 计算并更新位置和速度 def update(state, masses, G): r = state[:3] v = state[3:] forces = np.array([[-G * masses[i] / np.linalg.norm(r - rj)**3 * (r - rj) for j in range(3)] for i in range(3)]) a = forces.sum(axis=0) / masses return np.concatenate((v + dt * a, r + dt * v)) state = np.zeros(6) # 初始化状态(位置+速度) positions = [r0] # 存储所有时间点的位置 for _ in range(int(total_time / dt)): state = update(state, [m1, m2, m3], G) positions.append(state[:3]) plt.plot(*zip(*positions), 'o-') plt.xlabel('x') plt.ylabel('y') plt.title('运动模拟') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值