【论文阅读】DA-RNN & GeoMAN & DSTP-RNN

本文对比分析了DA-RNN、GeoMAN和DSTP-RNN三篇论文,重点探讨了它们在时间序列预测中的应用。DA-RNN采用双阶段注意力机制,GeoMAN利用多级注意力网络处理地理传感数据,DSTP-RNN则关注解码器中的时间序列注意力。三者均结合了注意力机制和循环神经网络,以提高预测准确性。
摘要由CSDN通过智能技术生成

NARX 和 注意力机制相关的论文,这三个论文的模型很像,放一起比较一下

NARX: Nonlinear autoregressive exogenous(NARX)模型是一种基于时间序列以及多重驱动(外生)序列的当前值和过去值进行预测的模型


DA-RNN

原始论文:A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction

转载来源:DARNN:一种新的时间序列预测方法——基于双阶段注意力机制的循环神经网络 来源:知乎

基于seq2seq模型(encoder decoder 模型),并结合注意力机制的一种时间序列预测方法。与传统的注意力机制只用在解码器的输入阶段,即对不同时刻产生不同的context vector不同,该文还在编码器的输入阶段引入了注意力机制,从而同时实现了选取特征因子(feature selection)和把握长期时序依赖关系(long-term temporal dependencies)

双阶段:第一阶段,使用注意力机制自适应地提取每个时刻的相关feature;第二阶段,使用另一个注意力机制选取与之相关的encoder hidden states。

第一阶段

使用当前时刻的输入\boldsymbol{x}_t \in \mathbb{R}^n,以及上一个时刻编码器的hidden state\boldsymbol{​{h}_{t-1}},来计算当前时刻编码器的hidden state\boldsymbol{h}_t \in \mathbb{R}^m,其中m是编码器的size。更新公式可写为:

h_t=f_1(h_{t-1},\boldsymbol{x}_t)对于这个问题,我们可以使用通常的循环神经网络vanilla RNN或LSTM以及GRU作为f_1。但为了自适应地选取相关feature,作者在此处引入了注意力机制。

可以根据上一个时刻编码器的hidden state\boldsymbol{h_{t-1}}和cell state\boldsymbol{s_{t-1}}计算得到:

e_t^k=\boldsymbol{v}_e^T \tanh(\boldsymbol{W}_e[\boldsymbol{h}_{t-1};\boldsymbol{s}_{t-1}]+\boldsymbol{U}_e \boldsymbol{x}^k)

其中[\boldsymbol{h}_{t-1};\boldsymbol{s}_{t-1}]是hidden state\boldsymbol{h}_{t-1}与cell state\boldsymbol{s}_{t-1}的连接(concatenation)。我的理解是\boldsymbol{W}_e[\boldsymbol{h}_{t-1};\boldsymbol{s}_{t-1}]

  • 2
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值