矩阵
weiwei_baby
优秀是一种习惯
展开
-
矩阵乘法几何意义
矩阵的几何意义,它可以总结为3个容易理解的特性。变换(Transformations)你应该已经知道变换(transformation),它将任意3D点的坐标变换到另一个3D点的坐标。下图你可以看到3个基本变换的例子: 第一个变换只是简单地将3D空间中的所有点移动到左下方,这种变换叫做平移(translation)。第二个变换是旋转(rota转载 2016-11-25 09:50:47 · 12481 阅读 · 0 评论 -
矩阵的几何意义
实数组的几何意义:(a,b)和(a,b,c)分别代表平面和三维空间上的一个点矩阵的几何意义:在线性空间中,如果确定了一个基,线性映射就可以用确定的矩阵表示。 即线性空间上的线性映射。 矩阵 独立的几何意义表现为对向量作用的结果。矩阵对一个向量是如何作用的?矩阵对多个向量是如何作用的?矩阵对几何图形(由无数个向量组转载 2016-11-25 09:38:46 · 7829 阅读 · 1 评论