关于稀疏表示的理解

稀疏表示可作为基础理论用于构建稀疏表示分类器[14](Sparse Representation Classifier, SRC)。SRC 假定当测试样本所在类的训练样本数足够多时,测试样本可由这些训练样本进行线性表示,而其它类的样本对重构该测试样本的贡献为 0,从而将一般信号的分类问题转化为了一种稀疏表示问题。大量实验证明,这类分类器能够较好地应用于图像分类和目标跟踪问题。Wright 指出 SRC 对数据缺损不敏感,当所求系数足够稀疏时,特征空间的选取变得不再重要;这些优势使得 SRC成为一种非常优秀的分类算法。虽然大量实验证明基于SRC是一种具有潜力的图像分类器,但近期一些文献[20][21]指出,对于小样本分类问题,系数的稀疏性对分类准确率并没有实质的帮助。针对此题,Huang等在文献[4]中指出结合线性判别分析技术能够提升类间的区分度,提升稀疏分类效果。Shenghua等在文献[22]中成功将核函数(Kernel)技巧与稀疏分类结合在了一起,此文献提出了基于Feature-Sign Search(FSS)的核函数稀疏分类(KSRC)算法并将其成功应用于人脸识别问题中。然而,Cuicui Kang等在文献[6]中指出使用FSS方法求取KSRC中凸优化问题的效率较低,此文献提出了核函数坐标下降法(KCD)用以求解凸优化问题,并结合LBP特征构建了人脸识别系统。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页