输入阻抗、输出阻抗和阻抗匹配

读者问了一个问题:“集总参数电路中,阻抗匹配(内阻=外阻)可以使负载得到最大的功率输出”这句话怎么理解?

这里涉及到几个概念:输入阻抗、输出阻抗、阻抗匹配,今天简单的聊一聊。

先了解一下阻抗的概念。

我们都知道电阻是有阻碍电流作用的,那电容电感有吗?答案是肯定的。

在百度词条中,给阻抗的定义是:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。

阻抗一般用Z表示,是一个复数,实部称为电阻,虚部称为电抗,电抗由容抗和感抗组成。

所以在R、C、L的电路中,很容易得到阻抗Z为:

其中,R是电阻,j是虚数单位,wL是感抗,1/wc是容抗。之前写过一篇文章,关于阻容感的等效模型,可以看看:眼见不一定为实!电阻、电容和电感的实际等效模型

回到正题。

1 输出阻抗

很多电路都有输出阻抗的概念,以电源举例,我们从输出这个点看进去,把电源当做一个整体,示波器测量V_{out}的正负极电阻,即可得到电源电路的输出阻抗

对电源来说,输出阻抗Z_{out}是电源V_{out}的内阻,可以将图画成下面这种形式。

我们在电源上加一个负载R_{L}。 

 

可以得出负载上的电压V_{1}为:

从公式可以看出V_{1}Z_{out}是成反比的,Z_{out}越大,V_{1}越小;可以理解Z_{out}V_{1}的上拉电阻,V_{out}是上拉源,上拉电阻Z_{out}越小,上拉能力越强,V_{1}越接近V_{out}

所以一般情况下,对输出电路来说,输出阻抗是越小越好。

2 输入阻抗

输出阻抗是针对输出电路来说的,输入阻抗是针对输入电路来说的。

下面这个图,红框内的为输入电路,V_{1}为输入电压,我们将万用表接在V_{1}GND上,测量得出的电阻即为输入电路的输入阻抗,记为Z_{in}

那输入阻抗是越大越好,还是越小越好呢?看下面这个图。

V_{1}作为输入,进入输入电路的点为V_{2},我们希望V_{2}是无限接近V_{1}的,但V_{2}会受到输入阻抗Z_{in}的影响。

 Z_{in}越接近0,可以理解V_{2}为的下拉能力越强,V_{2}电压会越接近于0,这当然不是我们想要的。反之Z_{in}越大,V_{2}的下拉能力越弱,V_{2}会越接近于V_{1}。输入电路无损耗。

所以很容易得出:一般情况下,输入电路的输入阻抗是越大越好。

3 阻抗匹配

聊完了输出阻抗和输入阻抗,那什么是阻抗匹配呢?

还是前面这个图,我们已经知道,Z_{out}越小,V_{1}越大,那什么情况下R_{L}上的功率是最大的呢?首先负载电流i为:

i= \frac{V_{out}}{Z_{out} + R_{L}}                                                   (公式1)

负载上的功率P为:

P= i^{2} * R_{L} = \frac{V_{out}^{2} * R_{L} }{(Z_{out} + R_{L})^{2}}                            (公式2)

其中V_{out}Z_{out}都是定值,即PR_{L}的函数,我们利用导数来求P_{max}

{\frac{dP}{dR_{L}}} = V_{out}^{2} * \frac{Z_{out}^{2} - R_{L}^{2}}{\left (Z_{out}^{2} + R_{L}^{2} \right )^{4}} = 0                        (公式3)

即可得出,到Z_{out} = R_{L}时,功率达到最大,带入公式(2),可得:

P_{max} = \frac{V_{out}^{2}}{4 * Z_{out}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值