最近在阅读论文的过程中接触到了Multi-Head Attention的结构,脑子里的第一反应是都叫Attention,那Mutli-Head Attention 和 Self-Attention 之间是什么关系呢?
在网上查阅资料,记笔记,总结一下。
首先,简单介绍一下multi-head attention,我最早接触到这种结构是在Transformer的编码器结构中,不知道这种编码器结构并不影响你去了解multi-head attention。简单来说它是一种多个不同表示空间的获取方法,如果以文本识别为例,一个attention就对应一个空间,那么有多个attention自然就可以获得多个空间。multi-head attention 为attention提供了多个表示子空间(representation subspaces),在每个attention中,采用Q、K、V权重矩阵(一种权重表示方式),这使得每个矩阵都通过随机初始化生成。
值得注意的是multi-head attention并不是独立的结构,它自身无法单独完成训练,但在使用过程中可以通过堆叠形成深层结构。常用于文本分类等场景的特征提取部分。
在对self-attention进行介绍之前,先来了解一下attention机制。
早在attention机制诞生之前,CNN、RNN及变体模型就已经存在了,那为何还要引入注意力机制呢?
主要原因:
1.算力限制ÿ
Mutli-Head Attention 和 Self-Attention 的区别与联系
最新推荐文章于 2024-02-29 10:50:14 发布