看论文遇到的没见过的机器学习领域的方法:Leave-one-out 简介
在机器学习领域,N折交叉验证被称为留一法(N:数据集中样本的数量)。
优点:
1.每次迭代都使用最大数目的样本去训练;
2.具有确定性
确定性含义:
首先我们需要对10折交叉验证(10-fold Cross Validation)有一个大致了解,在这种验证方法中我们将数据集分为10份,使用其中的9份进行训练而将另1份作为测试集。该过程可以重复10此,每次使用的测试数据都不同。这使得每次的测试和验证都可能会有不同结果,因为数据是随机分发的,被分发到的数据不同评估的结果就不同。但留一法与十折交叉不同它具有确定性。这是它的优势。
即每次应用留一法到一个分类器及同一数据集上,结果是相同的。
缺点:
1.算力要求高,对于同规模数据集进行训练留一法所用时长远超10折法;
2.采样不能代表数据集整体,存在偏差。原因在于没有采用分层采样,所以将每个样本作为一个集就极有可能存在较大偏差,这对结果影响同样很大。
Leave-one-out——留一法
最新推荐文章于 2025-03-16 19:58:59 发布