Leave-one-out——留一法

留一法是机器学习中的验证技术,尤其在小数据集上常用。其特点是每次训练时仅排除一个样本,确保每次迭代最大化利用数据。留一法的优势在于结果具有确定性,但缺点是计算成本高且可能因未进行分层采样导致偏差。因此,这种方法在资源允许的情况下,可提供更稳定但计算密集的模型验证方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看论文遇到的没见过的机器学习领域的方法:Leave-one-out 简介
在机器学习领域,N折交叉验证被称为留一法(N:数据集中样本的数量)。
优点
1.每次迭代都使用最大数目的样本去训练;
2.具有确定性
确定性含义
首先我们需要对10折交叉验证(10-fold Cross Validation)有一个大致了解,在这种验证方法中我们将数据集分为10份,使用其中的9份进行训练而将另1份作为测试集。该过程可以重复10此,每次使用的测试数据都不同。这使得每次的测试和验证都可能会有不同结果,因为数据是随机分发的,被分发到的数据不同评估的结果就不同。但留一法与十折交叉不同它具有确定性。这是它的优势。
即每次应用留一法到一个分类器及同一数据集上,结果是相同的。
缺点
1.算力要求高,对于同规模数据集进行训练留一法所用时长远超10折法;
2.采样不能代表数据集整体,存在偏差。原因在于没有采用分层采样,所以将每个样本作为一个集就极有可能存在较大偏差,这对结果影响同样很大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值