多因素分析模型解决方法
Finally, all data were cleansed and ready to analyze. Andy started overenthusiastically to visualize the data to get a first impression of the data. He had many dimensions and variables such that he spent several days visually analyzing them and determining the best methods to apply. At the end of that week, the team manager told him that he would need a draft presentation about the outcomes next Tuesday because the team manager had to present it in one week to a steering committee.
最后,所有数据都已清洗并准备分析。 Andy热情洋溢地开始可视化数据以获得对数据的第一印象。 他具有许多维度和变量,因此他花了几天的时间对它们进行可视化分析并确定最佳的应用方法。 在该周结束时,团队经理告诉他,下周二他将需要一份关于结果的演示文稿草稿,因为团队经理必须在一周内将其提交给指导委员会。
Andy told him that he has no results yet. But there was no space for negotiations. On Tuesday, conclusions had to be delivered and integrated into a PowerPoint presentation.
安迪告诉他,他还没有结果。 但是没有谈判的空间。 在星期二,必须提交结论并将其集成到PowerPoint演示文稿中。
Hastily, Andy produced some regression analyses and integrated them into the presentation.
仓促地,安迪进行了一些回归分析并将其整合到演示中。
After the steering committee meeting, the team manager told him that the project would not be carried on.
在指导委员会会议之后,团队经理告诉他该项目将不会继续进行。
Andy was very frustrated. That was his second project, and the second time it ended with the same decision. He has chosen this position because of the potential for doing great data science work on a large amount of data available.
安迪非常沮丧。 那是他的第二个项目,第二次以相同的决定结束。 他之所以选择此职位,是因为他有潜力对大量可用数据进行出色的数据科学工作。
This story is a real case, and it is not an atypical situation in corporations. I assume that some of you have already experienced a similar situation, too.
这个故事是真实的案例,在公司中不是典型情况。 我想你们当中有些人也已经经历过类似的情况。
The reason that this happens is not your skills.
发生这种情况的原因不是您的技能。
When thrown into a data science project in a corporate environment, the situation is different from the previous learning context.
在公司环境中投入数据科学项目时,情况与以前的学习环境不同。
My experience is that most data scientists struggle to manage the project, given the many corporate constraints and expectations.
我的经验是,鉴于许多公司的限制和期望,大多数数据科学家都在努力管理项目。
More than a few data scientists are disappointed and frustrated after the first projects and looking for another position.
在进行第一个项目并寻找另一个职位后,许多数据科学家感到失望和沮丧。
Why?
为什么?
They are trained in handling data, technical methods, and programming. Nobody ever taught them in project, stakeholder, or corporate data management or educated them about corporate business KPIs.
他们接受过处理数据,技术方法和编程方面的培训。 没有人曾在项目,利益相关者或公司数据管理方面教过他们,也没有教过他们有关公司业务KPI的知识。
It is the lack of experience with unspoken corporate practices.
这是缺乏对潜行企业实践的经验。
Unfortunately, there are more potential pitfalls in that area than with all your technical skills.
不幸的是,与您所有的技术技能相比,该领域存在更多的潜在陷阱。
If you know the determining factors, you can plan your data science tasks accordingly, pursue satisfying projects, and steer your work.
如果您知道决定因素,则可以相应地计划数据科学任务,追求令人满意的项目并指导工作。
In the following, I give you the eight most important drivers for the model approach selection in the corporate environment and how to mitigate them.
在下文中,我为您提供了在企业环境中选择模型方法以及如何减轻它们的八个最重要的驱动因素。
1.时间,时间表和截止日期 (1. Time, timelines, and deadlines)
What you need to know
你需要知道的
Corporations have defined project processes. Stage-gate or steering committee meetings are part of that where outcomes must be presented. Presentations have to be submitted a few days in advance and must contain certain expected information. Also, corporates are always under pressure to deliver financial results. That leads to consistently tight deadlines. These processes are part of the corporate culture, unspoken, and supposed that the employee knows them.
公司已经定义了项目流程。 阶段性会议或指导委员会会议是必须提出成果的会议的一部分。 演示文稿必须提前几天提交,并且必须包含某些预期的信息。 而且,企业总是承受着交付财务成果的压力。 这导致持续的时间紧迫。 这些流程是企业文化的一部分,是不言而喻的,并且假定员工知道它们。
How to address it?
如何解决?
Ask, ask, ask. Ask about the milestones, e.g., the meeting dates where project decisions will be made.
问,问,问。 询问里程碑,例如制定项目决策的会议日期。
Set up a time budget. Start at the milestone’s date and calculate backward a project schedule.
设置时间预算。 从里程碑的日期开始,然后向后计算项目进度表。
Include not only your tasks but also the surrounding actions, like coordination meetings, presentations, and deadlines for submitting the presentations. Do not forget that there is a review round for each presentation, and you have to consider adding a few days in advance of submission. Incl