如何使用python第1部分启动您的第一个肺癌检测项目

本文介绍了启动肺癌检测项目的步骤,包括数据下载、预处理代码克隆和Pylidc配置。数据预处理涉及 DICOM 格式的肺部图像,使用 LIDC-IDRI 开源数据集。项目分为数据预处理、分割模型训练和分类模型训练三个阶段。作者提供了一个配置文件创建脚本和数据准备脚本,用于处理肺部图像和生成掩模。文章还强调了区分肺区域分割和肺结节分割的重要性,并预告了后续的细分和分类教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

How is Artificial Intelligence used in the medical domain? One of the cliche answers to this type of question is Lung Cancer detection. But really, how many of you have ever seen a lung image data before? or even a simple Jupyter kernel going through the preprocessing step on this type of data? To be honest, it’s not an easy project that one can simply undertake despite its position as a classic example as a data science project. It’s not something like the Boston House pricing example we can easily find in Kaggle.

人工智能在医学领域如何使用? 这类问题的老套答案之一是肺癌检测。 但实际上,你们中有多少人以前见过肺图像数据? 甚至是简单的Jupyter内核都要对此类数据进行预处理? 老实说,尽管将其作为数据科学项目中的经典例子,但要完成这个任务并不容易。 这与我们可以在Kaggle轻松找到的Boston House定价示例不同。

But honestly, it’s not so hard as you think it is. With just some effort and time I can guarantee you that you can do it. You will get to learn more than just doing projects with tabular data. You will learn to process images, manage each mask and image files, how to mount image files, and many more!

但说实话,这并不像您想象的那么难。 只需花费一些时间和精力,我就能保证您可以做到。 您将获得更多的知识,而不仅仅是使用表格数据进行项目。 您将学习处理图像,管理每个蒙版和图像文件,如何挂载图像文件等等!

In this article, I would like to go through the procedures to start your very first Lung Cancer detection project. I started this project when I was a newbie to Python. I had a hard time going through other people’s Github and codes that were online. I hope that my explanation could help those who first start their research or project in Lung Cancer detection.

在本文中,我将介绍启动第一个肺癌检测项目的过程。 我是Python的新手时就开始了这个项目。 我很难浏览别人的Github和在线代码。 我希望我的解释可以帮助那些首先开始其肺癌检测研究或项目的人。

The whole procedure is divided into 3 steps: preprocessing of the data, training a segmentation model, training a classification model. Here, I will only talk about the downloading and preprocessing step of the data. You will need a working computer and storage of at least 130 GB memory(You don’t need to download the whole data if you just want to get a glimpse of it). In the later parts of my article, I will go through the model construction. Let’s begin!

整个过程分为3个步骤:数据预处理,训练分割模型,训练分类模型。 在这里,我仅讨论数据的下载和预处理步骤。 您将需要一台可以正常运行的计算机,并至少要存储130 GB的内存(如果您只是想一眼就不必下载全部数据)。 在本文的后面,我将介绍模型的构建。 让我们开始!

Image for post
https://www.cancerimagingarchive.net/) https://www.cancerimagingarchive.net/ ) <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值