度量学习 流形学习_流形学习2

度量学习 流形学习

潜图深度学习 (Deep learning with latent graphs)

TL;DR: Graph neural networks exploit relational inductive biases for data that come in the form of a graph. However, in many cases we do not have the graph readily available. Can graph deep learning still be applied in this case? In this post, I draw parallels between recent works on latent graph learning and older techniques of manifold learning.

TL; DR: 图神经网络利用关系归纳偏差来处理图形式的数据。 但是,在许多情况下,我们没有图可用。 在这种情况下,仍然可以应用图深度学习吗? 在这篇文章中,我将有关潜图学习的最新工作与较早的流形学习技术进行了比较。

The past few years have witnessed a surge of interest in developing ML methods for graph-structured data. Such data naturally arises in many applications such as social sciences (e.g. the Follow graph of users on Twitter or Facebook), chemistry (where molecules can be modelled as graphs of atoms connected by bonds), or biology (where interactions between different biomolecules are often modelled as a graph referred to as the interactome). Graph neural networks (GNNs), which I have covered extensively in my previous posts, are a particularly popular method of learning on such graphs by means of local operations with shared parameters exchanging information between adjacent nodes.

在过去的几年中,目睹了针对图结构数据开发ML方法的兴趣激增。 这样的数据自然会出现在许多应用中,例如社会科学(例如Twitter或Facebook上的“关注用户”图),化学(其中的分子可以建模为通过键连接的原子的图)或生物学(其中不同生物分子之间经常发生相互作用)建模为称为交互组的图表)。 图神经网络(GNN)是我在以前的文章中广泛讨论的一种特别流行的方法,它是通过局部操作和共享参数在相邻节点之间交换信息来学习此类图。

In some settings, however, we do not have the luxury of being given a graph to work with as input. This is a typical situation for many biological problems, where graphs such as protein-to-protein interaction are only partially known in the best case, as the experiments by which interactions are discovered are expensive and noisy. We are therefore interested in inferring the graph from the data and applying a GNN on it [1] — I call this setting “latent graph learning” [2]. The latent graph might be application-specific and optimised for the downstream task. Furthermore, sometimes such a graph might be even more important than the task itself, as it may convey important insights about the data and offer a way to interpret the results.

但是,在某些情况下,我们不能奢侈地得到一个可作为输入使用的图形。 这是许多生物学问题的典型情况,在最好的情况下,仅部分了解蛋白质-蛋白质相互作用等图,因为发现相互作用的实验既昂贵又嘈杂。 因此,我们有兴趣根据数据推断图形并对其应用GNN [1]-我将此设置称为“潜在图形学习” [2]。 潜在图可能是特定于应用程序的,并针对下游任务进行了优化。 此外,有时这样的图形可能比任务本身更为重要,因为它可以传达有关数据的重要见解并提供一种解释结果的方法。

A way of thinking of latent graph learning is that of a graph with an empty edge set. In this setting, the input is provided as a point cloud in some high-dimensional feature space. Unlike methods for deep learning on sets such as PointNet [3], which apply some shared learnable point-wise function to each point, we also seek to pass information across points. This is done by message passing on a graph constructed from the point features themselves.

潜伏图学习的思维方式是一个空边集图的。 在这种设置下,输入被提供为某些高维特征空间中的点云。 与诸如PointNet [3]之类的在集合上进行深度学习的方法不同,该方法将共享的可学习的逐点函数应用于每个点,我们还寻求跨点传递信息。 这是通过将消息传递到由点要素本身构造的图形上来完成的。

The first architecture of this kind, Dynamic Graph CNN (DGCNN) [4], was developed by Yue Wang from MIT, with whom I had the pleasure to collaborate during my sabbatical at that institution. Motivated by problems in computer graphics dealing with the analysis of 3D point clouds, the idea was to use the graph as a coarse representation of the local smooth manifold structure underlying a point cloud. A key observation of Yue was that the graph does not need to stay the same throughout the neural network, and in fact it can and should be updated dynamically — hence the name of the method. The following figure from our paper illustrates why this might be useful in computer graphics problems:

麻省理工学院的王悦开发了这种第一种架构,即动态图CNN(DGCNN)[4],在我休假期间,我很高兴与他合作。 受计算机图形学中涉及3D点云分析的问题的启发,其想法是将图形用作点云下局部光滑流形结构的粗略表示。 Yue的一个主要观察结果是,该图不需要在整个神经网络中保持不变,并且实际上并且可以并且应该动态地进行更新-因此该方法的名称。 我们论文的下图说明了为什么这可能在计算机图形问题中有用:

Image for post
Dynamic Graph CNNs construct on the fly a k -nearest neighbour graph that is used for feature diffusion. The graph is task-dependent and is updated after each layer. This figure (taken from [4]) depicts the distance from the red point (yellow colours represents closer points), showing that on a segmentation task the graphs in deeper layers capture the semantic rather than geometric relations such as pairs of wings, engines, etc.
动态图CNN动态地构建了一个 k 近邻图,用于特征扩散。 该图依赖于任务,并在每一层之后进行更新。 此图(取自[4])描述了距红点的距离(黄色代表较近的点),表明在分割任务中,较深层中的图捕获了语义而非几何关系,例如成对的机翼,引擎,等等

One of the limitations of DGCNNs was that the same space is used to construct the graph and the features on that graph. In a recent work with Anees Kazi from TUM and my postdoc Luca Cosmo, we proposed a new architecture called Differentiable Graph Module (DGM) [5] extending DGCNN by decoupling the graph and feature construction, as shown in the following figure:

DGCNN的局限性之一是使用相同的空间来构造图和该图上的特征。 在TUM的Anees Kazi和我的博士后Luca Cosmo的近期工作中,我们提出了一种新的架构,称为可微图模块(DGM)[5],它通过将图和特征构造分离来扩展DGCNN,如下图所示:

Image for post
Differentiable Graph Module (DGM) provides a mechanism to construct the graph and the features for the diffusion on the graph from the input data. Figure from [5].
可微图模块(DGM)提供了一种机制,可根据输入数据构造图和用于在图上进行扩散的特征。 图[5]。

DGM showed impressive results when applied to problems from the medical domain, such as disease prediction from brain imaging data. In these tasks, we are provided with the electronic health records of multiple patients, including demographic features (such as age, sex, etc) and brain imaging features, and attempt to predict whether a patient suffers from a neurological disease. Previous works showed the application of GNNs to such tasks using diffusion on a “patient graph” constructed by hand from the demographic features [6]. DGM offers the advantage of learning the graph, which possibly conveys insight into how certain features depend on each other for the specific diagnosis task. As a bonus, DGM also beat DGCNN in its game of point cloud classification, albeit only slightly.

将DGM应用于医学领域的问题时,例如从大脑成像数据进行疾病预测,其结果令人印象深刻。 在这些任务中,我们将获得多名患者的电子健康记录,包括人口统计特征(例如年龄,性别等)和大脑成像特征,并尝试预测患者是否患有神经系统疾病。 先前的工作表明,通过在人口统计特征上手工构建的“患者图”上进行扩散,将GNN应用于此

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值