合振动的初相位确定方法
振动是自然界中最常见的运动形式之一,同时也是近代物理学和科学技术众多领域中
的重要课题。随着生产技术的发展,动力结构又向大型化,复杂化,轻量化和高速化发展
的趋势,由此而带来的工程振动问题更为突出。振动在当今不仅作为基础科学的一个重要
分支,而且正走向工程科学发展的道路,它在地震学、建筑力学、机械、航空、航天、等
工业技术部门中占有越来越重要的地位。因此,掌握同方向同频率简谐振动合成中初相位
的确定方法,从而为研究现代科学技术振动和动态问题是十分重要的,更为初学者探讨振
动问题打下良好的基础。
一、简谐振动基本概念
物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或按正弦函数)的
规律随时间变化,这种运动称为简谐振动,简称谐振动
[1]
。简谐振动是一种最简单和最基
本的振动,一切复杂的振动都可以看作是由若干个简谐振动合成的结果。而振动的合成问
题实际上是个运动合成问题,合振动的求解方法是用矢量求和的方法。同方向同频率的的
合成是简谐振动合成最简单的形式,对于这种合成的求解,可以用代数法,也可以用几何
法。各种相关资料中都只有这个合成的结果,却没有对合成振动初相位两个
值的比较,
和用什么样的方法进一步的探讨挑选其中的一个最佳
值。下面就此问题进行深究。
二、简谐振动合成分析
由相关计算可知,这个合成的运动是简谐振动。若两个分振动的表达式是:
则合振动的表达式是:
合振动的振幅是:
①
说明:合振动的振幅与两个分振动的振幅
1
A
,
2
A
和初相位
2
1
,
都有关
合振动的初相位: