matlab遗传算法工具箱的设计,MATLAB遗传算法工具箱的设计

MA TLAB遗传算法工具箱的设计Ξ

谢勤岚 陈红

(中南民族大学电子信息工程学院 武汉 430074)

陶秋生

(武汉数字工程研究所 武汉 430074)

摘 要

在简要分析遗传算法要素的基础上,介绍了基于MA TLAB的遗传算法工具箱的设计。最后给出了一个用设计的MA TLAB遗传算法工具箱的求函数极值的应用实例。

关键词:遗传算法 MA TLAB 函数优化

中图法分类号:TP311

Design and Application of G enetic Algorithm Toolbox based on MAT LAB

Xie Q inlan Chen H ong

(College of Electronic and Information Engineering,SCU FN,Wuhan430074)

T ao Q iusheng

(Wuhan Digital Engineering Institute,Wuhan430074)

Abstract:Based on the simple analysis of genetic algorithm,the designing of a MA TLAB-based genetic algo2 rithm toolbox is introduced.An example using the designed toolbox to maximize a function is given at last.

K ey w ords:genetic algorithms,MA TLAB,function optimizing

Class number:TP311

1 引言

遗传算法(genetic algorithm,G A)是一类借鉴生物界自然选择和遗传机制的随机优化搜索算法,其主要特点是群体搜索策略和群体中个体之间的信息交换、搜索不依赖于梯度信息。由于不受函数约束条件(如连接性、可微性、单极性)的限制,因而具有广泛的适应能力。它尤其适用于处理传统搜索方法难以解决的复杂和非线性问题,可广泛应用于机器学习、优化设计、自适应控制、规划设计和人工生命等领域,是21世纪有关智能计算中的关键技术之一。其特点确定了它是一种通用的优化算法,因此设计通用的遗传算法程序是可行的[1,2,3,5]。

MA TLAB可应用于高性能数字计算的工程计算环境,它将数值分析、矩阵计算和绘图集成在一个易于使用的环境中[4]。用户定义函数是简单的解释结构的文本文件。因此,用MA TLAB设计遗传算法工具箱具有简单、易用、易于修改的特点。

我们设计的基于MA TLAB的遗传算法

Ξ收到本文时间:2003年2月17日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值