python 多因素方差分析_多因素方差分析估计平方和的三种方法

本文介绍了在Python中进行多因素方差分析时,计算平方和的三种方法:Type Ⅰ(序贯型)、Type Ⅱ(分层型)和Type Ⅲ(边界型)。每种方法都有其特定的调整依据,如Type Ⅰ与输入顺序相关,而Type Ⅱ和Type Ⅲ则与输入顺序无关。在数据均衡和因素正交的情况下,不同的方法可能产生不同的结果。Python默认使用Type Ⅱ,而R的aov()和anova()使用Type Ⅰ,可以通过car包的Anova()选择Type 2或3。文中还提供了R和Python的实现示例。
摘要由CSDN通过智能技术生成

在做多因素方差分析时,有三种方法计算平方和(以模型Y ~ A + B + A:B为例,即先输入A,再输入B,最后输入交互项A:B):Type Ⅰ Sums of Squares(Type1, sequential)

序贯型,后输入的因素根据之前输入的因素做调整,与输入顺序有关(A不做调整,B根据A做调整,A:B根据A和B做调整,因此使用Type1要注意模型中各因素的输入顺序)。

Type Ⅱ Sums of Squares(Type2, hierarchical)

分层型,根据同阶水平和低阶水平的因素做调整,与输入顺序无关(A和B同是一阶的,A根据B做调整,B根据A做调整;A:B是二阶的,因而A:B根据A和B做调整)。

Type Ⅲ Sums of Squares(Type3, marginal)

边界型,根据其他所有因素做调整,与输入顺序无关(A根据B和A:B做调整,B根据A和A:B做调整,A:B根据A和B做调整)。

这些分类在参考文献中有详细的介绍。当数据均衡(data is balanced,即各水平的样本量相等),且因素是正交的(factories are orthogonal,即各因素独立,讨论见:R gives Type I, Python gives Type II, SAS gives Type III.[1]Default Types of Sums of Squares for different programming languages[1]Decision Tree for Different Types of Sums of Squares in ANOVA[1]

SAS

这些分类似乎最初是在SAS中就有的,随后被广泛引入统计领域。不过SAS帮助文档[2]中多了一个Type Ⅳ。SAS使用PROC GLM过程步,改变CLASS和MODEL的取值来选择使用哪种方法。默认为Type3.

R

R中的aov()和anova()使用Type1,car包的Anova()可以指定参数type为2或3来选择Type2或Type3。

三种方法的原理及R语言实现:

[3] 给出了三种方法的原假设的公式表达

[4] 通俗的平方和分解的公式语言

R语言实现:

[5], [6]

Python

Python默认是Type2.

[7] 举例讲解了TypeⅠ和TypeⅢ,并用python实现

参考文献

[8]Robert I. Kabacoff.R In Action[M].Manning:New York,2015:212-218.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值