svm通俗讲解_通俗讲解支持向量机SVM(二)另辟蹊径!对偶性的几何解释

当你的才华还撑不起你的野心时,你应该静下心去学习 。

前言

关于支持向量机(Support Vector Machine, SVM)的强对偶关系证明,我在网上浏览过各种版本,绝大部分是比较繁琐的公式推导,这显然不利于读者理解。我们可以尝试切换思路,用几何描述的方法比较直观清晰的推出结论,相信看完这篇文章你一定能豁然开朗!

正文

为了直观解释强对偶关系,我们把原问题限定在二维平面上(多维同理),所以我们假设原问题(prime problem)为:

这里为了能限定在二维平面上,并且更简单直观,我们以只取一个约束条件为例。我们定义这个优化问题的定义域

,这样为解此问题,我们依然选择构造拉格朗日函数,得到:

我们设原问题的最优解

, 实际上也可表示成

,两者是等价的。那么,对偶问题的最优解相应即为

接下来很关键的一步,我们要构建一个二维坐标平面,这里用集合U表示,我们这样定义U,

, 为简化公式,我们定义

, 所以U可表示为

,这样我们就得到了我们想要的坐标系,Great!

为了不失普适性,我们用一个非凸函数(一个爱心)代表集合U在坐标系内的分布,有了这个坐标系,原问题最优解

就可以表示为

此处说明,inf表示下确界,可以理解为几何意义上的取”最低点“,

则是题给的约束条件。所以可以这样理解,原问题的最优解即为下图示阴影区域在z轴的投影所得线段的最低点p。

看完了原问题的最优解,我们再看看其对偶问题(dual problem)的解

,该式可以相应简化为$$d^* = \max_\lambda} \min_{x}(t+\lambda z) \tag 4$$,那么应该怎么在同一坐标系内表示出这个最优解d^*^呢?我们可以先看上式的后一部分

,我们用

表示它,即,

,我们尝试用我们构建的二维坐标系描述它,那么$g(\lambda) = \inf \left{t+\lambda z (t,z) \in U\right}$

根据上图,

实际就是在z轴的截距,假定初始状态

这条直线如蓝线1所示,那么要找到与爱心U“相擦”,并且截距最小的直线,即为上图中蓝线2,它与z轴的交点即为

。知道了

也很好求了,$$d^* = \max_{\lambda g(\lambda)$$,什么含义呢?就是反复调整蓝线2的斜率

,使其与z轴截距最大(但注意要保证和U相擦),所以最优情况如下图红线所示(我寻思这图画着画着咋有点不对劲嘞...),与U相擦,同时与Z轴交于d点,此即为d^*^ !!!

由图可以明显看出,d的值无论怎么取都不会超过p的,所以由此推的第一重关系-----弱对偶关系

好,那么如何才能使d,p两点重合在一点呢?很容易推得集合U(图中爱心)需要是凸函数,同时还需要满足slater条件,它的定义是:

slater条件实际上是原问题P可以等价于对偶问题Q的一个充分条件。

你的鼓励是我创作的动力,如果你有收获,点个赞吧

我接下来还会陆续更新机器学习相关的学习笔记,补充这个系列。如果看到这里的话,说明你有认真看这篇文章,希望你能有所收获!最后,欢迎交流指正!

还有不明白的欢迎阅读其他文章:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值