凸优化 -- 强对偶与弱对偶及几何解释和鞍点解释

本文深入探讨了一阶必要性条件(KKT)成立的前提,特别是ICLQ条件的作用,以及线性可行方向如何反映几何结构。通过鞍点定理,我们理解了强对偶条件下,原始问题与对偶问题最优点构成鞍点的数学原理。
摘要由CSDN通过智能技术生成

回顾一阶必要性条件(KKT)成立的条件时ICLQ条件成立,即线性可行方性与序列可行方向相同,这样才可以用一阶泰勒条件才能成立。即线性可行方向能够反应其的几何结构
添加链接描述
在这里插入图片描述
D的相对内部:简单来说就是将边缘去掉
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
鞍点解释
鞍点定义
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这里用到了鞍点定理
f 0 ( x ∗ ) = inf ⁡ x s u p λ ≥ 0 L ( x , λ ) g ( λ ∗ , v ∗ ) = sup ⁡ λ ≥ 0 inf ⁡ x L ( x , λ ) f_0(x^*)=\inf_{x} sup_{\lambda \ge 0 }{L(x,\lambda)}\\ g(\lambda ^*,v^*)=\sup_{\lambda\ge0}\inf _x L(x,\lambda) f0(x)=infxsupλ0L(x,λ)g(λ,v)=supλ0infxL(x,λ)
如果强对偶成立,则原始问题和对偶问题的最优点构成了鞍点。 反之成立
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值