回顾一阶必要性条件(KKT)成立的条件时ICLQ条件成立,即线性可行方性与序列可行方向相同,这样才可以用一阶泰勒条件才能成立。即线性可行方向能够反应其的几何结构
添加链接描述
D的相对内部:简单来说就是将边缘去掉
鞍点解释
鞍点定义
这里用到了鞍点定理
f
0
(
x
∗
)
=
inf
x
s
u
p
λ
≥
0
L
(
x
,
λ
)
g
(
λ
∗
,
v
∗
)
=
sup
λ
≥
0
inf
x
L
(
x
,
λ
)
f_0(x^*)=\inf_{x} sup_{\lambda \ge 0 }{L(x,\lambda)}\\ g(\lambda ^*,v^*)=\sup_{\lambda\ge0}\inf _x L(x,\lambda)
f0(x∗)=infxsupλ≥0L(x,λ)g(λ∗,v∗)=supλ≥0infxL(x,λ)
如果强对偶成立,则原始问题和对偶问题的最优点构成了鞍点。 反之成立