凸优化第五章对偶 5.3几何解释

本文介绍了凸优化中对偶函数的几何解释,特别是在只有一个不等式约束的情况下。通过对偶函数的定义,展示了如何在约束函数形成的集合G中寻找最小值。上境图形式进一步阐述了强对偶性的条件,即存在非竖直支撑超平面的边界点,这在凸问题中通常成立。
摘要由CSDN通过智能技术生成

5.3几何解释

  1. 对偶函数的解释
  2. 上境图

对偶函数的解释

简单考虑只有一个不等式约束f_1(x)\leq 0

定义

G =\left \{ (f_1(x),f_0(x))|x\in D \right \}

已知对偶函数:

g(\lambda )=\underset{(u,t)\in G}{inf}(t+\lambda u)=\underset{(u,t)\in G}{inf}(\lambda ,1)^T(u,t)

所有对偶函数相当于在G上极小化(\lambda ,1)^T(u,t),得到斜率为-\lambda的支撑超平面。

下图,t表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值