Slogan
一切皆是「Ω | 元」!
连载:12
共计6489字,预计阅读时间:0分钟 ~ 也许一辈子
本文目录
上部:
Ω、「Ω | 元」,永恒不变
∞、悖论律,真假镜像
中部:
0、因果律,善恶无一
1、同一律,是非不二
下部:
2、矛盾律,对错合一
3、排中律,好坏二分
4、充足理由律,美丑四向
Ω、「Ω | 元」,永恒不变
Ω(ω)是希腊字母中的第24个,也是最后一个。中文音译:欧米伽、字面上的意思是“大O”(omega),以便与字母“奥米克戎”(omicron,小 O)区别。可以代指“终结”。
大写Ω含义:计算机科学:柴廷常数(Chaitin constant),数学中首个不可数的序数。
Ω,是希腊字母中的最后一个字母,意指终结。
而在Ω之后,再无希腊字母,这便有了一种莫名的神秘感,那么,宇宙一切的存在,就用Ω来表示吧,它代表了一切的终结。
我心即宇宙,宇宙即我心。
长大之后,每次看到这句格言,都不明觉厉。
想象一下,浩瀚缥缈的宇宙,包括我们熟悉的银河系、太阳系以及地球上的一切,像微缩一样,投影在我的心上,而我就像上帝一般,在一旁俯视着、观摩着这个微缩的宇宙,这样的感觉,就能让人一辈子回味无穷,那真是一种奇妙无比的感受。
从《君正之道》连载3:「Ω.∞ | 元 · 宇宙的终极思维」(下)中第4节:空间,洞中自有乾坤,中所给出的「Ω | 元结构」基本模型图,我们可以看到:
Ω,包含了∞、0、1、2、3、4、∞-等。
如果Ω存在一个最大的∞,那么,Ω就有最大的∞那么大。简单来说,Ω,就是最大的∞。
「Ω | 宇宙」,就是最大的∞。
如果Ω存在一个最小的∞-,那么,Ω就有最小的∞-那么小。简单来说,Ω,就是最小的∞-。
「Ω | 宇宙」,就是最小的∞-。
我们再来看看《君正之道》连载10:「Ω.2 | 元 · 几何原理的格局」(中)中所给出的以下图表:
我们可以说,「Ω | 宇宙」,就是「Ω | xy平面坐标系」,就是最大的参考坐标系∞。
「Ω | 宇宙」,就是最大的∞。
我们再把「Ω | xy平面坐标系」中的0,定义成为一个「Ω | 0的xy平面坐标系」:
其中,和其它数字元素不同的是,我们对0的定义,是要确定「Ω | 无穷小的0」,即最小的0,故而,在「Ω | 0」的xy平面坐标系中的∞-,和一般「Ω | xy平面坐标系」中∞,大小刚好相反的,∞-代表无穷小,∞代表无穷大。
我们可以看到,「Ω | 宇宙」,就是「Ω | 0的xy平面坐标系」,就是最小的参考坐标系∞-,就是在原点0上的空集∅。
「Ω | 宇宙」,就是最小的0。
之前,我们在《君正之道》连载2:「Ω.∞ | 元 · 宇宙的终极思维」(上)中第∞节:意识的苏醒和沉睡,中给出「Ω | 人」的元结构图:
我们可以看到,在「Ω | 人体感官」中,∞,对应的是意识,0,对应的是心灵与身体。
宇宙是最大的∞,这意味着,宇宙是我们最大的意识,即无穷大的意识。也就是说,
宇宙,是全集U的意识,即里面什么都有的意识。
宇宙是最小的0,这意味着,宇宙是我们最小的心灵与身体,即无穷小的心灵与身体。也就是说,
宇宙,是空集∅的心灵与身体,即里面什么都没有的心灵与身体。
也许这就是宇宙的真谛,永恒不变的真理:
我心即宇宙,宇宙即我心。
∞、悖论律,真假镜像
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
什么叫悖论?
悖论,是逻辑学中可以同时推导或证明两个互相矛盾的命题的命题或理论体系。
有哪些经典的悖论?(以下悖论摘自网络)
1、生日问题是指,如果在一个房间要多少人,则两个人的生日相同的概率要大于50%? 答案是23人。这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。
从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。
2、唐吉诃德悖论是指记载在唐吉诃德小说中的一个涉及悖论的故事。桑丘·潘萨在他治理的岛上颁布一条法例,规定过桥的旅客必需诚实地表示自己的目的,否则就要接受绞刑。有一个旅客在见到桥上的告示后,宣称自己过桥是要接受绞刑的。
这使执法者感到为难:如果旅客的言论为真,则他应被释放并不得受绞刑,但如此一来旅客言论即变为假。如其言论为假,则他会被绞死,但如此一来其言论即变为真。该旅客被带到桑丘面前,而桑丘最后把他释放。
3、说谎者悖论,在哲学和逻辑学中,古典的说谎者悖论是指一个说谎者声称自己正在说谎:例如,声称:“我在说谎”或者“我所说的皆为假”。如果他确实在说谎,那么他所说的就是真的,但如果他所说的就是真的,那么他就是在说谎。
在“这个语句正在说谎”的悖论中,为了强化悖论,使悖论更经得起严格的逻辑分析,“说谎”的概念往往被“真假”的概念所取代,仅仅保留“说谎者”这一名称来指涉关于古典二值逻辑会推导出矛盾的悖论。
如果“这个语句为假”为真,那么这个语句为假,但是如果这个语句声称它为假,且它为假,那么它一定为真,如此一来悖论于焉成形。
4、祖父悖论是一种时间旅行的悖论,科幻故事中常见的主题。最先由法国科幻小说作家赫内·巴赫札维勒(René Barjavel)在他1943年的小说《不小心的旅游者》(Le Voyageur Imprudent)中提出。情景如下:
假如你回到过去,在自己父亲出生前把自己的祖父母杀死,但此举动会产生一矛盾的情况:你回到过去杀了你年轻的祖父,祖父死了就没有父亲,没有父亲也不会有你,那么是谁杀了祖父呢?或者看作:你的存在表示,祖父没有因你而死,那你何以杀死祖父?
5、小城里的理发师放出豪言:他只为,而且一定要为,城里所有不为自己刮胡子的人刮胡子。但问题是:理发师该为自己刮胡子吗?如果他为自己刮胡子,那么按照他的豪言“只为城里所有不为自己刮胡子的人刮胡子”他不应该为自己刮胡子;但如果他不为自己刮胡子,同样按照他的豪言“一定要为城里所有不为自己刮胡子的人刮胡子”他又应该为自己刮胡子。
我们再看看一些神奇的悖论图形:
怎么理解悖论这种存在?
悖论,是同时存在着黑和白,和或真与假,和或善与恶,和或是与非,和或对与错,和或好与坏,和或美与丑等等,一切同时存在相互对立,而且互为因果的存在。
当我们观察一个一体化的「∞ | 黑白悖论体」,若我们只看到了黑色,那么它就呈现出黑色,若我们只看到白色,那么它就呈现出白色,若我们能同时看到黑色和白色,那么它就呈现出黑和白的融合色,即无黑无白的灰色。
灰色,是黑色和白色的融合色。
「0 | 灰色思想」,是「∞ | 黑白色悖论思维」的产物。黑白的比例不同,灰色的深浅不同,有的灰色思想,更白一些,有的灰色思想,更黑一些。
我们来看看无穷大符号:∞的不同解释或定义。
无穷或无限,数学符号为∞。来自于拉丁文的“infinitas”,即“没有边界”的意思。它在神学、哲学、数学和日常生活中有着不同的概念。通常使用这个词的时候并不涉及它的更加技术层面的定义。早期无限的观点是:最早关于无限的记载出现在印度的夜柔吠陀(公元前1200-900)。书中说:“如果你从无限中移走或添加一部分,剩下的还是无限。”数学对于无穷或无限的解释或定义是:“无穷或无限不是指边界外就没有东西,而是指边界外永远有另一个边界存在。”
我们再看看无穷大符号:∞的图形:
在小学的自然课中,大家就了解过一种蜜蜂舞,也称之为蜜蜂8字舞:
蜜蜂舞,dance of bees亦称收获舞。蜜蜂的工蜂外出发现花蜜或花粉归巢时,到巢脾上密集的蜂群当中,一边激烈地振动着腹部,一边按8字形步行作盘旋行动。
蜜蜂舞,是对同巢工蜂使之通知蜜源存在的报信的一种形式。体表上剩下的花香,传递了蜜源植物的香味;蜜源距巢的距离超过100米时,就对重力方向保持一定的角度,先划直线,然后向右或左旋转,再恢复原来的位置。在这种情况下,直线与重力方向所成的角度,是从蜂巢来看太阳方向与食物方向所成的角度一致的。此外,跳舞的快慢及当时发出的断断续续的翅振动频率和距离成反比,藉此也传达了蜜源的距离。跳舞的延续时间越长,则表示蜜源越丰富,需要出动较多的工蜂。
我们再看看一个自然界的神奇现象:
莫比乌斯环/莫比乌斯带,常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。
我们再看看莫比乌斯环的具体形状:
莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决。
比如在普通空间无法实现的"手套易位"问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。
在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。
十进制,怎么来的?为什么左右手各有五个手指头?
根据《君正之道》连载4:「Ω.0 | 元 · 原始思想的火花」(上)中第Ω节:一切皆是「Ω | 元」,中所述的「Ω.0 | 元 ▪ 本源法则」第∞条:
我们知道,「Ω | 元」的六个元素:∞、0、1、2、3、4,皆有「Ω | 反元」。以下就是「Ω | 元」的正反元定义表:
其中,∞的反元,就是∞。这符合∞作为「∞ | 悖论」的定义。另外,5是0的反元,6是1的反元,7是2的反元,8是3的反元,9是4的反元。
如果把左手称为正元,则右手称为反元。左手五个手指头的编号,就是0、1、2、3、4,右手五个手指头的编号,就是5、6、7、8、9。和双手类似,双足也是如此。
正元和反元之间,除了正反区别以外,其它特征和性质一致,故而,我们可以用对0的各种定义,来定义5,用对1的各种定义来定义6,用对2的各种定义来定义7,用对3的各种定义来定义8,用对4的各种定义来定义9。
一般来说,只有在一些需要用到正元和反元情况,才会出现5、6、7、8、9,大多数时候,我们对「Ω | 元」的元素定义,都是用∞、0、1、2、3、4六个元素来描述。
十进制,就是这么诞生了!
正元0、1、2、3、4,依次分布在∞符号、或莫比乌斯环的左圈圈上,反元5、6、7、8、9,依次分布在∞符号、或莫比乌斯环的右圈圈上,如图11所示:
注意:图13中的无穷大符号∞,正在进行无限次的自我循环,每一次自我循环的轨迹,都和上一次自我循环的轨迹不一样。
从左圈圈,即正元0、1、2、3、4出发,到右圈圈,即反元5、6、7、8、9,再回到左圈圈的正元,再回到右圈圈的反元,正反正反的自我循环往复,永无止境,每循环往复一次,就在0前加1,每次的循环结果就是:
0、10、20、30、40、...、100、110、120、...、∞
这就是十进制的由来。
其中,∞,有两种自我循环方式,称之为:正向循环和反向循环,亦称顺时针循环和逆时针循环:
从∞出发,依次经由0、1、2、3、4、5、6、7、8、9,再回到∞的循环方式,称之为∞的正向循环方式,即顺时针循环方式。
从∞出发,依次经由9、8、7、6、5、4、3、2、1、0,再回到∞的循环方式,称之为∞的反向循环方式,即逆时针循环方式。
最后,我们给出三个「Ω | 元 ▪ 悖论律」:
「Ω.3.∞ | 悖论律第∞定律:真假镜像定律」:
∞里有什么,0、1、2、3、4里就会有什么。
∞里没有什么,0、1、2、3、4里就会没有什么。
举例来说,
∞里有真,0、1、2、3、4就会有真。
∞里有假,0、1、2、3、4就会有假。
∞里有真和假,0、1、2、3、4就会有真和假。
「Ω.3.1 | 悖论律第1定律:分合定位定律」:
∞进行正向循环,代表着∞的定位是:分离或创造。
∞进行反向循环,代表着∞的定位为:聚合或消灭。
举例来说,
向心外而行,是正向循环,即顺时针循环,代表着:心在创造世界。
向心内而行,是反向循环,即逆时针循环,代表着:心在聚合世界。
「Ω.3.3 | 悖论律第3定律:高低境界定律」:
对∞而言,在∞中所包含的「∞ | 悖论」种类越多,∞的境界越高。
对∞而言,在∞中所包含的「∞ | 悖论」种类越少,∞的境界越低。
举例来说,
1、对「∞ | 思维」而言,在思维中所包含的的悖论种类越多,思维的境界越高。
2、对「∞ | 意识」而言,在意识中所包含的的悖论种类越多,意识的境界越高。
3、对「∞ | 大脑」而言,在大脑中所包含的的悖论种类越多,大脑的境界越高。
版本
作者:君正
版本号:V1.0
原文创建:2020年7月13日
最后更新:2020年7月13日
参考
引用希腊字母:Ω
引用逻辑学:悖论
引用悖论:生日问题悖论
引用悖论:唐吉坷德悖论
引用悖论:说谎者悖论
引用悖论:祖父悖论
引用悖论:理发师悖论
引用无穷大符号:∞
引用自然现象:蜜蜂舞
引用自然现象:莫比乌斯环
引用莫比乌斯环的特性
引用
参考公众号:君正之道
参考君正之道连载1:「Ω | 元 · 历史与概述」
参考君正之道连载2:「Ω.∞ | 元 · 宇宙的终极思维」(上)
参考君正之道连载3:「Ω.∞ | 元 · 宇宙的终极思维」(下)
参考君正之道连载4:「Ω.0 | 元 · 原始思想的火花」(上)
参考君正之道连载5:「Ω.0 | 元 · 原始思想的火花」(下)
参考君正之道连载6:「Ω.1 | 元 · 基本原则的奠定」(上)
参考君正之道连载7:「Ω.1 | 元 · 基本原则的奠定」(中)
参考君正之道连载8:「Ω.1 | 元 · 基本原则的奠定」(下)
参考君正之道连载9:「Ω.2 | 元 · 几何公理的格局」(上)
参考君正之道连载10:「Ω.2 | 元 · 几何公理的格局」(中)
参考君正之道连载11:「Ω.2 | 元 · 几何公理的格局」(下)
「Ω | 君正之道」
Copyright © 2019-2020 君正之道 无漏之学 版权所有