算法分析渐进符号(O、o、Θ、Ω、ω)总结

用“渐近记号”来表示“渐近复杂度”。

1.  渐近记号包括:

(1)Θ(西塔):紧确界。            相当于"="

(2)O (大欧):上界。              相当于"<="

(3)o(小欧):非紧的上界。       相当于"<"

(4)Ω(大欧米伽):下界。          相当于">="

(5)ω(小欧米伽):非紧的下界。 相当于">"

给出这些记号的定义:

注解:渐近非负的意思是“当n趋于无穷大时,f(n)和g(n)都非负”。

2.  用集合论来表示这5个符号的关系:

从上面的图可以看出:

(1)如果f(n)=Θ(g(n)),则f(n)=O(g(n))且f(n)=Ω(g(n))。

(2)如果f(n)= o (g(n)),则f(n)=O(g(n))。

(3)如果f(n)=ω(g(n)),则f(n)=Ω(g(n))。

因此对于这些渐近记号的使用最准确应该是“f(n)∈ O (g(n))”,但是一般都是写成“f(n)=O(g(n))”。

给出一些例子:

O(n^2)可以是n,2n,1,2n^2等。

Θ(n^2)可以是n^2,3n^2等。

ω(n^2)可以是n^3,n^10等,但不能是n^2。

Ω(n^2)可以是n^2,n^3,n^10等。

o(n^2)可以是n,1,3n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值