大数据技术在火力发电企业生产中的应用分析
摘要:分析火力发电企业挖掘数据的价值,发电企业数据特点,阐述当前火力
发电企业数据应用现状,探讨发电企业在大数据技术的应用方向,说明发电企业
应用大数据分析技术需要考虑和解决的问题以及面临的挑战。
关键词:数据价值;大数据分析;运行优化;设备故障预警
前言
在电力体制改革与供给侧结构性改革的背景下,发电企业面临日益严峻的市
场挑战和日趋严苛的环保要求,
“
提质增效,节能降耗,降非停,保安全,创金
牌
”
,如何降低火电企业运维成本在电量竞争报价中报出有竞争力的电价,将对每
个发电企业都十分重要。
机组生产过程中会产生海量的数据,而这些数据往往蕴含着大量丰富的价值,
对电厂优化运行、节能降耗、安全环保有着重要的决策依据和意义。大数据技术
在火力发电企业中的应用将为火电机组节能降耗减排提供了新的方向和思路。本
文将对大数据技术在火力发电企业生产中的应用场景进行分析探讨。
1
火力发电厂数据分类及价值分析
火力发电生产自动化控制技术的提高和信息管理软件的大规模使用,产生了
大量的发电企业设备和操作运行人员的日常行为、生产运行监控及管理经营类数
据,从功能性出发,可将发电企业的这些数据划分为以下三大类:
①
电力生产大
数据。数据类型主要分为实时生产数据、指标信息、设备信息和缺陷信息等结构
化数据。
②
发电企业运行管理大数据。主要指发电企业的资产管理、生产管理、
协同办公和邮件系统等可能含有压缩文件、图片文件、视频文件等非结构化数据。
③
发电系统监控大数据。主要来源于电力生产现场监控、安保监控和燃料监控等
各类监控系统产生的视频多媒体数据。
传统的数据价值可做数据分析,数据查询,数据报表等,而大数据的商业模
式应用,可对大量消费者的消费信息进行收集、整理,利用大数据可进行精准营
销;传统火力发电行业可利用大数据技术帮助它们降低成本,提高效率,做出更
明智的业务决策等等。
2
火力发电厂数据应用现状
发电企业大多采用厂级监控系统(
SIS
)进行历史数据储存,设备故障诊断、
设备健康状况管理、耗差分析等工作,其面临的困境和问题在于:一是鉴于目前
国内的理论计算水平,发电设备的机理模型往往不够精确,很难依靠这些机理模
型进行故障诊断或者设备性能计算,测点数据的不足也导致很难使用机理模型进
行计算,假设后的理想机理模型与实际情况往往相差甚大。同时,对于发电企业
而言,并非所有设备性能最好的时候,整台机组的性能最好或者效率最高。二是
缺少一个实时捕捉设备异常的引擎,仅仅依靠
SIS
数据进行判断,其结果常常难
以让人信服。三是
DCS
、
SIS
等系统报警时,往往已经太晚了,故障已经恶化或者
没有足够的时间处理。当关键设备发生故障时,很可能会对整个系统及其他相关
设备产生重大影响
——
造成非计划停机,检修费用超支,发电量损失,效率降低,
环保排放超标,甚至人身或者设备损坏等。
因此,需要一种先进有效的手段,在成千上万个变量中找出问题进行预测性
分析,随着计算机计算速度的提升,大数据分析技术适应这一需要而产生。