重庆云阳2021云中高考成绩查询,2021年云阳县高考状元是谁及其成绩名单

本文回顾了2020、2019和2018年云阳县高考状元的详细情况,包括各科分数和毕业学校,展示了当地高考竞争的激烈程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一年一度的高考过后,高考状元花落谁家,一直是社会关注度极高的热点话题。那么2021年云阳县高考状元是谁呢?今年云阳县高考状元多少分?由于2021年官方暂未公布云阳县高考分数,下面小编将为你介绍关于云阳县历年高考状元的相关信息,仅供参考。

dddabe82559f10fbd260e1c48f03b4a0.png

一、2020年云阳县高考状元名单

理科总分最高分

王明珍

语文:123

数学:144

外语:145

综合:291

总分:703

毕业学校:云阳中学

文科总分最高分

任清海

语文:127

数学:147

外语:138

综合:240

总分:652

毕业学校:云阳中学

二、2019年云阳县高考状元名单

云阳中学文科学生李悦以裸分675分(全市第2名),理科学生卢启腾以裸分699分(全市第15名),分别获得全县文理最高分,均可凭裸分被北大、清华录取。

三、2018年云阳县高考状元名单

云阳中学王馨旎和于恺聪分别获得全县文理考试成绩第一名。

理科最高分

姓名:于恺聪

高考总分:690分

语文:114分

数学:149分

英语:139分

理综:288分

毕业学校:云阳中学

文科最高分

姓名:王馨旎

高考总分:622分

语文:116分

数学:147分

英语:144分

文综:215分

毕业学校:云阳中学

内容概要:《中国HR+HER2-早期乳腺癌患者诊疗需求调研白皮书》聚焦于中国早期HR+/HER2-乳腺癌患者的诊疗现状和需求。白皮书通过定量调研,揭示了患者在确诊、复发风险评估、术后辅助治疗及长期管理等各阶段面临的挑战,包括对新药的期待、信息需求及信息渠道偏好。调研显示,患者对新型辅助治疗方案的疗效和生活质量提升寄予厚望,但也存在对不良反应的担忧。此外,患者在理解诊断报告、复发风险认知及获取权威信息方面存在诸多障碍。白皮书呼吁加强患者教育、优化医患沟通、提高新药可及性,以改善患者预后和生活质量。 适合人群:早期HR+/HER2-乳腺癌患者、家属、临床医生及相关医疗工作者。 使用场景及目标:①帮助患者更好地理解诊断结果和后续治疗方案;②为临床医生提供患者需求和挑战的真实数据,优化诊疗路径;③推动社会各界关注和支持早期乳腺癌患者的教育和管理,助力患者早日康复,重获高质量生活。 其他说明:白皮书强调了早期乳腺癌患者在诊疗旅程中面临的多重障碍,包括早期筛查覆盖率不足、复发风险认知偏差及医患沟通壁垒。为应对这些挑战,白皮书提出了多项改进建议,如加强乳腺健康教育、优化诊断结果沟通方式、提升患者对复发风险的认知、强化不良反应管理及构建权威信息平台等。
重庆市云阳县P-Center问题的学校选址可以通过以下步骤进行数学建模和gurobipy编码: 1. 确定需求点和服务点:需求点是学生和家长的居住地,服务点是学校的候选位置。 2. 确定距离度量方法:可以使用欧几里得距离或曼哈顿距离来度量需求点和服务点之间的距离。 3. 确定P值:P值是指需要覆盖的需求点数量,可以根据实际情况来确定。 4. 建立数学模型:P-Center问题可以表示为一个最小化问题,即最小化服务点和需求点之间的最大距离。具体而言,可以使用以下数学模型: Minimize max(d(i,j)) subject to sum(y(j)) = P y(j) ∈ {0,1} x(i,j) ∈ {0,1} d(i,j) = distance between demand point i and candidate facility j where y(j) is a binary variable indicating whether to build a facility at candidate site j x(i,j) is a binary variable indicating whether demand point i is assigned to facility j 5. 编写gurobipy代码:可以使用gurobipy来解决P-Center问题。下面是一个简单的代码示例: ```python import gurobipy as gp from gurobipy import GRB # Input data demand_points = [(109.5163,30.9315), (108.6970,29.8465), (109.9387,30.7121), (108.8347,31.9367)] # 需求点坐标 candidate_facilities = [(110.9834,30.8278), (110.9445,31.1303), (110.5027,30.7109)] # 候选位置坐标 P = 2 # 需要覆盖的需求点数量 # Create model m = gp.Model("P-Center Problem") # Create decision variables y = m.addVars(candidate_facilities, vtype=GRB.BINARY, name="Facility") x = m.addVars(demand_points, candidate_facilities, vtype=GRB.BINARY, name="Assignment") # Create objective function m.setObjective(gp.max_([gp.min_([gp.quicksum([x[(i,j)]*distance(i,j) for i in demand_points]) for j in candidate_facilities if y[(j)].x == 1.0]) for j in candidate_facilities]), GRB.MINIMIZE) # Create constraints m.addConstr(gp.quicksum([y[(j)] for j in candidate_facilities]) == P) for i in demand_points: m.addConstr(gp.quicksum([x[(i,j)]*y[(j)] for j in candidate_facilities]) == 1) # Solve problem m.optimize() # Print results print("Objective value:", m.objVal) for j in candidate_facilities: if y[(j)].x == 1.0: print("Facility at", j) for i in demand_points: for j in candidate_facilities: if x[(i,j)].x == 1.0: print("Demand point", i, "assigned to facility at", j) ``` 在上面的代码中,`distance(i,j)`表示需求点i和候选位置j之间的距离。需要根据使用的距离度量方法进行相应的实现。运行代码后,可以得到最优的学校选址方案,以及每个需求点分配到的学校。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值