堆优化prim算法C语言,prim算法的堆优化。

/**

堆prime的优化,主要从for循环里的两个for循环下手:

第一个for循环是找最小值,方式使用堆进行优化;

对第二个for循环,用邻接表进行操作。

**/

for(int i = 1; i

{

int temp_j = 0;

int min_c = 0x3f3f3f;

for(int j = 1; j

{

if(vis[j] == 0&&dis[j]

{

min_c = dis[j];

temp_j = j;

}

}

q.push(temp_j);

vis[temp_j] = 1;

for(int j =1 ; j

{

if(!vis[j] && dis[j] > m[temp_j][j])

{

dis[j] = m[temp_j][j];

}

}

}

下面是我优化的代码:

#include

#include

#include

#include

#include

using namespace std;

int n;

int head[3010];

struct node{

int to;

int c;

int next;

}edge[200000];

struct ver{

int x;

int dis;

bool operator < (const ver& t) const{

return dis>t.dis;

}

};

priority_queue q;

int prime()

{

int res = 0;

//init a collection

int dis[3010];

int v_j;

int vis[3010];

for(int i = 0; i

{

dis[i] = 0x3f3f3f;

}

// q.push(0);

vis[0] = 1;

for(int i = head[0]; i!= -1; i = edge[i].next)

{

v_j = edge[i].to;

dis[v_j] = edge[i].c;

q.push(ver{v_j,dis[v_j]});

}

dis[0] = 0x3f3f3f;

for(int i = 1; i

{

int temp_j = 0;

int min_c = 0x3f3f3f;

//找出dis中的最小值的坐标,这里体现log n

ver t_ver = q.top();

q.pop();

temp_j = t_ver.x;

res += t_ver.dis;

vis[temp_j] = 1;

for(int j = head[temp_j]; j!=-1; j = edge[j].next)

{

v_j = edge[j].to;

if(!vis[v_j] && dis[v_j] > edge[j].c)

{

dis[v_j] = edge[j].c;

q.push(ver{v_j,dis[v_j]});

}

}

}

return res;

}

init(){

for(int i = 0;i

head[i] = -1 ;

}

}

int main()

{

int ms;

while(~scanf("%d%d",&n,&ms))

{

init();

int u,v,c;

int k = 0;

for(int i = 0;i

{

scanf("%d%d%d",&u,&v,&c);

edge[k].next = head[u];

edge[k].to = v;

edge[k].c = c;

head[u] = k;

k++;

edge[k].next = head[v];

edge[k].to = u;

edge[k].c = c;

head[v] = k;

k++;

}

cout<

}

}

最后送上一个求最大树的算法,应用也很广泛。

时间复杂度 max(n*n*logn,n*n*max(m‘)m‘表示某点的临接边数);

#include

#include

#include

#include

#include

using namespace std;

int n;

int head[3010];

struct node{

int to;

int c;

int next;

}edge[200000];

struct ver{

int x;

int dis;

bool operator < (const ver& t) const{

return dis

}

};

priority_queue q;

int prime()

{

int res = 0;

//init a collection

int dis[3010];

int v_j;

int vis[3010];

for(int i = 0; i

{

dis[i] = -0x3f3f3f;

}

vis[0] = 1;

for(int i = head[0]; i!= -1; i = edge[i].next)

{

v_j = edge[i].to;

dis[v_j] = edge[i].c;

q.push(ver{v_j,dis[v_j]});

}

for(int i = 1; i

{

int temp_j = 0;

int max_c = -0x3f3f3f;

//找出dis中的最小值的坐标,这里体现log n

ver t_ver = q.top();

q.pop();

temp_j = t_ver.x;

res += t_ver.dis;

vis[temp_j] = 1;

for(int j = head[temp_j]; j!=-1; j = edge[j].next)

{

v_j = edge[j].to;

if(!vis[v_j] && dis[v_j] < edge[j].c)

{

dis[v_j] = edge[j].c;

q.push(ver{v_j,dis[v_j]});

}

}

}

return res;

}

init(){

for(int i = 0;i

head[i] = -1 ;

}

}

int main()

{

int ms;

while(~scanf("%d%d",&n,&ms))

{

init();

int u,v,c;

int k = 0;

for(int i = 0;i

{

scanf("%d%d%d",&u,&v,&c);

edge[k].next = head[u];

edge[k].to = v;

edge[k].c = c;

head[u] = k;

k++;

edge[k].next = head[v];

edge[k].to = u;

edge[k].c = c;

head[v] = k;

k++;

}

cout<

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值