/**
堆prime的优化,主要从for循环里的两个for循环下手:
第一个for循环是找最小值,方式使用堆进行优化;
对第二个for循环,用邻接表进行操作。
**/
for(int i = 1; i
{
int temp_j = 0;
int min_c = 0x3f3f3f;
for(int j = 1; j
{
if(vis[j] == 0&&dis[j]
{
min_c = dis[j];
temp_j = j;
}
}
q.push(temp_j);
vis[temp_j] = 1;
for(int j =1 ; j
{
if(!vis[j] && dis[j] > m[temp_j][j])
{
dis[j] = m[temp_j][j];
}
}
}
下面是我优化的代码:
#include
#include
#include
#include
#include
using namespace std;
int n;
int head[3010];
struct node{
int to;
int c;
int next;
}edge[200000];
struct ver{
int x;
int dis;
bool operator < (const ver& t) const{
return dis>t.dis;
}
};
priority_queue q;
int prime()
{
int res = 0;
//init a collection
int dis[3010];
int v_j;
int vis[3010];
for(int i = 0; i
{
dis[i] = 0x3f3f3f;
}
// q.push(0);
vis[0] = 1;
for(int i = head[0]; i!= -1; i = edge[i].next)
{
v_j = edge[i].to;
dis[v_j] = edge[i].c;
q.push(ver{v_j,dis[v_j]});
}
dis[0] = 0x3f3f3f;
for(int i = 1; i
{
int temp_j = 0;
int min_c = 0x3f3f3f;
//找出dis中的最小值的坐标,这里体现log n
ver t_ver = q.top();
q.pop();
temp_j = t_ver.x;
res += t_ver.dis;
vis[temp_j] = 1;
for(int j = head[temp_j]; j!=-1; j = edge[j].next)
{
v_j = edge[j].to;
if(!vis[v_j] && dis[v_j] > edge[j].c)
{
dis[v_j] = edge[j].c;
q.push(ver{v_j,dis[v_j]});
}
}
}
return res;
}
init(){
for(int i = 0;i
head[i] = -1 ;
}
}
int main()
{
int ms;
while(~scanf("%d%d",&n,&ms))
{
init();
int u,v,c;
int k = 0;
for(int i = 0;i
{
scanf("%d%d%d",&u,&v,&c);
edge[k].next = head[u];
edge[k].to = v;
edge[k].c = c;
head[u] = k;
k++;
edge[k].next = head[v];
edge[k].to = u;
edge[k].c = c;
head[v] = k;
k++;
}
cout<
}
}
最后送上一个求最大树的算法,应用也很广泛。
时间复杂度 max(n*n*logn,n*n*max(m‘)m‘表示某点的临接边数);
#include
#include
#include
#include
#include
using namespace std;
int n;
int head[3010];
struct node{
int to;
int c;
int next;
}edge[200000];
struct ver{
int x;
int dis;
bool operator < (const ver& t) const{
return dis
}
};
priority_queue q;
int prime()
{
int res = 0;
//init a collection
int dis[3010];
int v_j;
int vis[3010];
for(int i = 0; i
{
dis[i] = -0x3f3f3f;
}
vis[0] = 1;
for(int i = head[0]; i!= -1; i = edge[i].next)
{
v_j = edge[i].to;
dis[v_j] = edge[i].c;
q.push(ver{v_j,dis[v_j]});
}
for(int i = 1; i
{
int temp_j = 0;
int max_c = -0x3f3f3f;
//找出dis中的最小值的坐标,这里体现log n
ver t_ver = q.top();
q.pop();
temp_j = t_ver.x;
res += t_ver.dis;
vis[temp_j] = 1;
for(int j = head[temp_j]; j!=-1; j = edge[j].next)
{
v_j = edge[j].to;
if(!vis[v_j] && dis[v_j] < edge[j].c)
{
dis[v_j] = edge[j].c;
q.push(ver{v_j,dis[v_j]});
}
}
}
return res;
}
init(){
for(int i = 0;i
head[i] = -1 ;
}
}
int main()
{
int ms;
while(~scanf("%d%d",&n,&ms))
{
init();
int u,v,c;
int k = 0;
for(int i = 0;i
{
scanf("%d%d%d",&u,&v,&c);
edge[k].next = head[u];
edge[k].to = v;
edge[k].c = c;
head[u] = k;
k++;
edge[k].next = head[v];
edge[k].to = u;
edge[k].c = c;
head[v] = k;
k++;
}
cout<
}
}