prim算法的堆优化。

/**
堆prime的优化,主要从for循环里的两个for循环下手:

第一个for循环是找最小值,方式使用堆进行优化;

对第二个for循环,用邻接表进行操作。




**/





for(int i = 1; i<n; i++)
    {

        int temp_j = 0;

        int min_c = 0x3f3f3f;

        for(int j = 1; j<n; j++)
        {

            if(vis[j] == 0&&dis[j]<min_c)
            {

                min_c = dis[j];
                temp_j = j;
            }

        }

        q.push(temp_j);
        vis[temp_j] = 1;

        for(int j =1 ; j<n; j++)
        {

            if(!vis[j] && dis[j] > m[temp_j][j])
            {

                dis[j] = m[temp_j][j];

            }

        }
}

下面是我优化的代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;

int n;
int head[3010];

struct node{
    int to;
    int c;
    int next;
}edge[200000];

struct ver{
    int x;
    int dis;
    bool operator < (const ver& t) const{
        return dis>t.dis;
    }
};

priority_queue<ver> q;

int  prime()
{
    int res = 0;
    //init a collection
    int dis[3010];

    int v_j;
    int vis[3010];
    for(int i = 0; i<n; i++)
    {
        dis[i] = 0x3f3f3f;
    }

   // q.push(0);
    vis[0] = 1;

    for(int i = head[0]; i!= -1; i = edge[i].next)
    {
        v_j = edge[i].to;
        dis[v_j] = edge[i].c;
        q.push(ver{v_j,dis[v_j]});

    }

    dis[0] = 0x3f3f3f;

    for(int i = 1; i<n; i++)
    {

        int temp_j = 0;

        int min_c = 0x3f3f3f;
        //找出dis中的最小值的坐标,这里体现log n

        ver t_ver = q.top();
        q.pop();

        temp_j = t_ver.x;
        res += t_ver.dis;

        vis[temp_j] = 1;

        for(int j = head[temp_j]; j!=-1; j = edge[j].next)
        {
            v_j = edge[j].to;

            if(!vis[v_j] && dis[v_j] > edge[j].c)
            {

                dis[v_j] = edge[j].c;
                q.push(ver{v_j,dis[v_j]});

            }

        }



    }
    return res;


}

init(){

    for(int i = 0;i<n;i++){
        head[i] = -1 ;
    }
}

int main()
{
    int ms;
    while(~scanf("%d%d",&n,&ms))
    {

        init();
        int u,v,c;
        int k = 0;
        for(int i = 0;i<ms;i++)
        {

            scanf("%d%d%d",&u,&v,&c);
            edge[k].next = head[u];
            edge[k].to = v;
            edge[k].c = c;
            head[u] = k;
            k++;
            edge[k].next = head[v];
            edge[k].to = u;
            edge[k].c = c;
            head[v] = k;
            k++;


        }
        cout<<prime()<<endl;

    }
}

最后送上一个求最大树的算法,应用也很广泛。

时间复杂度 max(n*n*logn,n*n*max(m‘)m‘表示某点的临接边数);

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;

int n;
int head[3010];

struct node{
    int to;
    int c;
    int next;
}edge[200000];

struct ver{
    int x;
    int dis;
    bool operator < (const ver& t) const{
        return dis<t.dis;
    }
};

priority_queue<ver> q;

int  prime()
{
    int res = 0;
    //init a collection
    int dis[3010];

    int v_j;
    int vis[3010];
    for(int i = 0; i<n; i++)
    {
        dis[i] = -0x3f3f3f;
    }

    vis[0] = 1;

    for(int i = head[0]; i!= -1; i = edge[i].next)
    {
        v_j = edge[i].to;
        dis[v_j] = edge[i].c;
        q.push(ver{v_j,dis[v_j]});

    }


    for(int i = 1; i<n; i++)
    {

        int temp_j = 0;

        int max_c = -0x3f3f3f;
        //找出dis中的最小值的坐标,这里体现log n

        ver t_ver = q.top();
        q.pop();

        temp_j = t_ver.x;
        res += t_ver.dis;

        vis[temp_j] = 1;

        for(int j = head[temp_j]; j!=-1; j = edge[j].next)
        {
            v_j = edge[j].to;

            if(!vis[v_j] && dis[v_j] < edge[j].c)
            {

                dis[v_j] = edge[j].c;
                q.push(ver{v_j,dis[v_j]});

            }

        }



    }
    return res;


}

init(){

    for(int i = 0;i<n;i++){
        head[i] = -1 ;
    }
}

int main()
{
    int ms;
    while(~scanf("%d%d",&n,&ms))
    {

        init();
        int u,v,c;
        int k = 0;
        for(int i = 0;i<ms;i++)
        {

            scanf("%d%d%d",&u,&v,&c);
            edge[k].next = head[u];
            edge[k].to = v;
            edge[k].c = c;
            head[u] = k;
            k++;
            edge[k].next = head[v];
            edge[k].to = u;
            edge[k].c = c;
            head[v] = k;
            k++;


        }
        cout<<prime()<<endl;

    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值