一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为一个科学家的。——爱因斯坦
古典时期学者们的数学工作的精华,幸运地在欧几里得和阿波罗尼斯两个人的著作中流传到今天。从生活年代来说,两人都属于希腊历史上第二个大分期,即亚历山大时期。但他们的著作的内容和精神都是属于古典时期的。
首先介绍欧几里得。
一、背景
欧几里得(Euclid,约公元前330年—公元前275年),出生于雅典的古希腊数学家,欧氏几何开创者,被称为“几何之父”。年轻时在柏拉图学院求学,后应托勒密王邀请在埃及的亚历山大城办学授徒,并于公元前300年完成《几何原本》的编著。
《几何原本》共分13卷,包含了5条公理、5条公设、23个定义和467个命题,是一部集前人思想和欧几里得个人创造性于一体的不朽之作,基本囊括了从公元前7世纪一直到公元前4世纪前后总共400多年的数学发展历史,并使几何学成为一门独立的、演绎的科学——欧氏几何。
《几何原本》开创了基于公理化基础、利用演绎逻辑推导出结论(定理)进而建立系统化知识体系的方法——公理化方法,成为后来2000多年间建立任何知识体系必须遵守的严密思维的范式。牛顿的《自然哲学之数学原理》即照此范式写成。
最早的中译本是1607年(明代万历35年)由意大利传教士利玛窦和徐光启合译出版的,只译了15卷本的前6卷,它是我国第一部数学翻译著作。取名为《几何原本》,中文“几何”的名称就是从这里开始的。而后9卷的引入是在两个半世纪后的1857年由清朝的学者李善兰和英国人韦列亚力翻译补充的。
二、《几何原本》里的定义和公理
定义
1、点是没有部分的那种东西。
2、线是没有宽度的长度。(注:线这个字指曲线)
3、一线的两端是点。(注:书中没有无限伸展的线)
4、直线是同其中个点看齐的线。(注:书中直线指线段)
5、面是只有长度和宽度的那种东西。
6、面的边缘是线。(注:所以是有界的)
7、平面是与其上直线看齐的那种面。